МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

В.И. Кузьмин

ГРАВИМЕТРИЯ

Утверждено редакционно-издательским советом академии в качестве учебного пособия для студентов геодезических специальностей всех форм обучения

> Новосибирск СГГА 2011

Рецензенты: кандидат геолого-минералогических наук, доцент, Томский политехнический университет Б.Д. Миков кандидат технических наук, доцент, Сибирская государственная геодезическая академия В.Ф. Канушин

Кузьмин, В.И.

К89 Гравиметрия [Текст]: учеб. пособие / В.И. Кузьмин. – Новосибирск: СГГА, 2011. – 193 с.

ISBN 978-5-87693-467-3

Учебное пособие составлено кандидатом геолого-минералогических наук, доцентом В.И. Кузьминым в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования и программами курсов «Гравиметрия» и «Геодезическая гравиметрия» для студентов геодезических специальностей всех форм обучения.

Издание содержит теоретическую часть, в которой изложены вопросы теории гравитационного метода, устройства, поверок и исследования гравиметров, методики проведения гравиметрических измерений на местности, их последующей обработки, оценки точности, вычисления аномалий силы тяжести и построения гравиметрических карт, а также практикум, состоящий из восьми лабораторных работ.

Рекомендовано к изданию Ученым советом Института геодезии и менеджмента СГГА.

Ответственный редактор – доктор технических наук, профессор, СГГА А.И. Каленицкий

Печатается по решению редакционно-издательского совета СГГА

УДК 550.831

© ГОУ ВПО «Сибирская государственная геодезическая академия» (СГГА), 2011

ISBN 978-5-87693-467-3

СОДЕРЖАНИЕ

Введен	ие	5
1. Kp	аткая теория метода	7
1.1.	Предмет и задачи гравиметрии	7
1.2.	Распределение силы тяжести на поверхности эллипсоида вращен	ия 9
1.3.	Аномалии силы тяжести	13
1.4.	Уклонение отвеса	15
1.5.	Гравиметрические данные в задачах инженерной геодезии	22
1.5.	1. Поправка в измеренное горизонтальное направление	22
1.5.	2. Поправка в зенитное расстояние	24
1.5.	3. Влияние уклонения отвеса на измеряемое расстояние	24
1.5.	4. Влияние уклонения отвеса на результаты тригонометрическо	го
	и геометрического нивелирования	25
1.5.	5. Редуцирование азимута в шахту	26
2. Уст	гройство гравиметра	28
2.1.	Кварцевая упругая система	34
2.2.	Система нивелирования	37
2.3.	Электрическая система	38
2.4.	Оптическая система	38
2.5.	Измерительная система	39
2.6.	Диапазонная система	41
2.7.	Вакуумное устройство	41
2.8.	Термостатирование гравиметра	42
3. По	верки и исследования гравиметров	45
3.1.	Настройка гравиметра на минимум чувствительности к наклону	по
	уровням	46
3.1.	1. Первый способ настройки уровней	48
3.1.	2. Второй способ настройки уровней	52
3.1.	3. Третий способ настройки уровней	52
3.2.	Определение масштабного коэффициента гравиметра	53
3.3.	Определение цены оборота диапазонного винта	57
3.4.	Определение коэффициента смещения нуль-пункта гравиметра	57
3.4.	1. Аналитический способ	58
3.4.	2. Графический способ	58
3.5.	Определение чувствительности и порога чувствительности	
	гравиметра	59
3.6.	Определение времени переходного процесса или становления	
	отсчета	61
3.7.	Определение верхнего предела измерений силы тяжести без	
	перестройки диапазона гравиметра	62
3.8.	Исключение влияния люфта («мертвого хода») измерительного	
	винта	62
3.9.	Определение температурного коэффициента гравиметра	63

3.10. Определение барометрического коэффициента гравиметра	63					
4. Методика гравиметровых работ	65					
4.1. Методы измерения силы тяжести	65					
4.2. Виды гравиметрических съемок	68					
4.3. Геодезическое обеспечение гравиметрических съемок	69					
4.4. Выполнение гравиметрических измерений	70					
4.4.1. Опорная гравиметрическая сеть	70					
4.4.2. Рядовая сеть	73					
4.5. Обработка результатов гравиметровых измерений и оценка их						
точности	76					
Лабораторные работы	78					
Лабораторная работа № 1	78					
Лабораторная работа № 2	89					
Лабораторная работа № 3	94					
Лабораторная работа № 41	01					
Лабораторная работа № 51	.07					
Лабораторная работа № 61	11					
Лабораторная работа № 71	21					
Лабораторная работа № 81	27					
Библиографический список1	34					
Приложение 11	36					
Приложение 21	37					
Приложение 31	38					
Приложение 41	39					
Приложение 51	41					
Приложение 61	42					
Приложение 71	45					
Приложение 81	52					
Приложение 91	55					
Приложение 101	57					
Приложение 11						
Приложение 12 190						
Приложение 131	.92					

Светлой памяти Бориса Дмитриевича Микова посвящается

ВВЕДЕНИЕ

Гравиметрические данные используются во многих сферах деятельности человека, как научных, так и практических. Так, например, на связи формы поверхности Земли с элементами гравитационного поля основан физический метод определения фигуры нашей планеты.

редукционной Решение задачи высшей геодезии, определение геодезических координат, высот практически невозможно без знания величин аномалий уклонения отвеса И высот, которые определяются по гравиметрическим данным.

Результаты измерения силы тяжести на поверхность Земли и фиксация ее изменения во времени позволяют изучать внутреннее строение Земли, определять ее физические параметры.

Все явления, происходящие на поверхности Земли, связаны с перемещением масс внутри нее. Эти явления можно фиксировать при постоянном мониторинге гравитационного поля в тектонически активных областях и тем самым делать прогноз возможных землетрясений или извержений вулканов.

Повышение требований к точности расчета орбит искусственных спутников Земли увеличивает значимость гравиметрических данных, которые используются для целей автономной навигации. Незнание особенностей гравитационного поля порождает погрешности в показаниях инерциальных навигационных систем и определении координат точек земной поверхности.

Строительство уникальных объектов народного хозяйства, таких, как ускорители частиц, антенны радиотелескопов, телебашни, прокладка протяженных подземных коммуникаций, требующих выполнения монтажных работ с относительной погрешностью не ниже $1 \cdot 10^{-6}$, невозможны без учета неоднородностей гравитационного поля, с которыми связано положение отвесных линий.

Высокоточные гравиметрические измерения проводятся на геодинамических полигонах для мониторинга геологических процессов в тектонически активных областях, а также на месторождениях углеводородного сырья для контроля за ходом эксплуатации скважин. Постоянный контроль за характером изменения гравитационного поля помогает выявить и изучить величину деформаций земной поверхности в объеме: фиксировать и предотвращать осадки и смещения дорогостоящих инженерных сооружений, к которым относятся и эксплуатационные колонны скважин.

Знание значений ускорения силы тяжести необходимо и в метрологии – для воспроизводства ряда физических величин (силы, давления, силы тока и др.).

В данном учебном пособии кратко изложены вопросы теории гравитационного метода, устройства, поверок и исследования гравиметров,

методики проведения гравиметрических измерений на местности, их последующей обработки, оценки точности, вычисления аномалий силы тяжести и построения гравиметрических карт. Приведена методика вычисления уклонений отвесной линии и аномалии высоты.

Издание предназначено для выполнения лабораторно-практических работ и подготовки к зачету по дисциплине «Геодезическая гравиметрия».

Автор выражает благодарность инженерам кафедры астрономии и гравиметрии Д.Н.Голдобину и Т.И.Гороховой за техническую помощь в подготовке издания.

1. КРАТКАЯ ТЕОРИЯ МЕТОДА

1.1. Предмет и задачи гравиметрии

Гравиметрия – раздел геофизики – наука об измерении и изучении распределения силы тяжести и ее составляющих на земной поверхности [12, 33, 35].

В предмет «Гравиметрия» входят вопросы использования результатов измерения силы тяжести для определения фигуры Земли и ее внутреннего строения, а также для изучения геологического строения ее верхних слоев: земной коры и мантии [4, 7, 8, 11, 12, 25, 27, 31, 38].

Задачей гравиметрии является определение гравитационного поля Земли и других небесных тел как функции местоположения и времени по измерениям силы тяжести и гравитационных градиентов на поверхности тела или вблизи него.

Начало экспериментальному изучению силы взаимодействия между Землей и физическими телами было положено итальянским ученым Галилео Галилеем (1564–1642), который в 1590 г. определил, на основе закона равноускоренного движения свободно падающего тела, численное значение силы притяжения, приблизительно равное 10 м/с².

Теоретическое обоснование явления притяжения между телами сделал английский физик и математик Исаак Ньютон (1642–1717), который вывел закон всемирного тяготения:

$$F = f \cdot \frac{m_1 \times m_2}{r^2},$$
 H,(1.1)

где *m*₁ и *m*₂ – массы притягиваемых тел, кг;

r – расстояние между телами, м;

f – гравитационная постоянная, или коэффициент пропорциональности между левой и правой частями формулы, м³/(кг · с²).

Закон всемирного тяготения Ньютона является теоретической основой гравиметрии. Численное значение *f* первым определил в 1789 г. английский физик Г. Кавендиш (1731–1810) с помощью усовершенствованных им крутильных весов конструкции Дж. Мичела (1724–1793).

Значение *f* получилось равным $(6,673 \pm 0,003) \cdot 10^{-11} \text{ м}^3/(\text{кг} \cdot \text{c}^2)$. В настоящее время значение *f* равно $(6,67259 \pm 0,00085) \cdot 10^{-11} \text{ м}^3/(\text{кг} \cdot \text{c}^2)$.

Значение гравитационной постоянной не зависит ни от физических или химических свойств обеих масс, ни от величины и направления скорости их движения, ни от свойств среды, разделяющей эти тела. Она зависит только от выбранной системы измерения единиц массы, длины и времени.

Сила тяжести – сила, с которой все тела притягиваются Землей. Для шарообразной Земли с массой M и радиусом \overline{R} однородной по плотности сила притяжения определяется по формуле:

$$\overline{F} = \frac{fM}{\overline{R}^2}.$$
 (1.2)

Вектор силы притяжения \overline{F} направлен к центру Земли.

На точечную массу находящуюся на поверхности реальной Земли, вращающейся вокруг своей оси со скоростью ω (рис. 1.1), кроме силы ньютоновского тяготения действует центробежная сила \overline{C} и сила притяжения небесных тел \overline{F}_n . Центробежная сила вычисляется по формуле:

$$C = \omega^2 \rho, \qquad (1.3)$$

где *р* – расстояние точки N от оси вращения Земли;

ω-угловая скорость вращения Земли;

Равнодействующей этих сил является сила тяжести G. В каждой точке земной поверхности с единичной массой (m = 1) существует единственный вектор силы тяжести. G Совокупность векторов образует поле силы тяжести гравитационное поле. Или, другими гравитационным словами, полем пространство, называется В котором проявляются силы тяготения. Направление отвесной линии в пространстве совпадает с вектором силы тяжести.

Рис. 1.1. Силы, действующие на точку физической поверхности Земли

Размерность силы тяжести dim $G = L \cdot M \cdot T^{-2}$, где L – длина (м), M – масса (кг), T – время (с).

Единицей измерения силы тяжести в СИ является 1 Ньютон = $1 \text{ кг} \cdot \text{м/c}^2$.

Сила притяжения, действующая на единичную массу, есть напряженность поля силы тяжести, численно равная ускорению *g*, сообщаемому этой массе.

Размерность ускорения силы тяжести в СИ:

 $\dim g = L \cdot T^{-2},$

где *L* – длина (м); *T* – время (с).

Единица измерения ускорения силы тяжести в СИ – м/с².

Это очень большая величина. Для Земли ее среднее значение составляет $\overline{g} = 9,81$ м/с².

В гравиметрии за единицу ускорения силы тяжести принят 1 Гал – в честь Г. Галилея:

1 Гал = $1 \cdot 10^{-2}$ м/с² – гал;

1мГал = $1 \cdot 10^{-5}$ м/с² – миллигал;

1мкГал = $1 \cdot 10^{-8}$ м/с² – микрогал.

Для определения \overline{g} в любой точке пространства необходимо знать три ее составляющие по осям прямоугольных координат: g_x, g_y, g_z , и угол между направлением \overline{g} и осями координат, т. е. углы $\angle g, X$; $\angle g, Y$; $\angle g, Z$.

В 1773 г. Ж. Лагранж (1736–1813) предложил использовать скалярную функцию W(x,y,z), частные производные которой по осям координат равны проекциям \overline{g} на эти оси:

$$\frac{\partial W}{\partial X} = g_x; \ \frac{\partial W}{\partial Y} = g_y; \ \frac{\partial W}{\partial Z} = g_z.$$

К. Гаусс (1777–1855), крупнейший немецкий математик, назвал эту функцию потенциалом:

$$W = f \int \frac{dm}{r} + \frac{w^2}{2} \left(X^2 + Y^2 \right)$$
(1.4)

Первое слагаемое этого выражения – потенциал тяготения V, а второе – потенциал центробежной силы Q:

W = V + Q.

Физический смысл потенциала – это работа в поле тяготения по перемещению единичной массы из бесконечности в данную точку:

$$W = g_s \cdot S \cdot \cos\left(\overline{g}, S\right), \quad M^2/c^2.$$
(1.5)

При перемещении массы в направлении, перпендикулярном вектору силы тяжести имеем: $dW = g_s \cdot dS \cdot \cos 90^\circ$, dW = 0, т. е. в каждой точке пространства будем иметь поверхность одинакового потенциала W = const. B 1873 г. уровенную поверхность, близкую к поверхности невозмущенного океана, Иоганн Бенедикт Листинг (1808–1882) назвал геоидом.

Если перемещение массы происходит в направлении, параллельном вектору силы тяжести, то

$$dW = g_s \cdot dS \cdot \cos 0^\circ, \, dW = g_s dS \,,$$

откуда

$$dS = dh = \frac{dW}{g_s}$$

В данном случае dS – расстояние между уровенными поверхностями. Оно обратно пропорционально величине g_s : чем больше g_s , тем меньше расстояние между уровенными поверхностями. Для эллипсоида $g_s = \gamma$, dS = dn, $\gamma = \frac{\partial W}{\partial n}$, т. е. сила тяжести (на эллипсоиде) – это первая производная

потенциала силы тяжести по нормали.

1.2. Распределение силы тяжести на поверхности эллипсоида вращения

Формулу для вычисления силы тяжести на поверхности эллипсоида получил в 1743 г. французский математик Клеро Алекси Клод (1713–1765). При выводе формулы он представил Землю состоящей из ряда эллипсоидальных слоев постоянной плотности и применил при этом законы гидростатики:

$$g = g_e \left(1 + \beta \cdot \sin^2 B \right), \tag{1.6}$$

где *g*_{*e*} – значение силы тяжести на экваторе;

B – геодезическая широта точки на поверхности эллипсоида; при $B = 90^{\circ}$ получим значение силы тяжести на полюсе – g_p ;

β – коэффициент, определяющий избыток силы тяжести относительно экватора;

$$\beta = \frac{g_P - g_e}{g_e} = \frac{5}{2}q - \alpha_{z},$$

где α_2 – сжатие эллипсоида по гравиметрическим данным:

$$\alpha_{e} = \frac{5}{2}q - \beta; \qquad (1.7)$$

$$q = \frac{\omega^{2} \cdot a^{3}}{f \cdot M_{3}} = \frac{\omega^{2} \cdot a}{g_{e}} = \frac{C_{e}}{g_{e}}; \qquad (1.7)$$

$$g_{e} = \frac{f \cdot M_{3}}{a^{2}} (1 + 3n - q); \qquad (1.8)$$

$$n = \frac{K}{2a^{2}}, K = \left(C - \frac{A + B}{2}\right) \cdot M_{3}; \qquad (1.8)$$

$$A = f\left(y^{2} + z^{2}\right) \cdot dm, B = f\left(x^{2} + z^{2}\right) dm, C = f\left(x^{2} + y^{2}\right) dm; \qquad (1.8)$$

$$C_{e} = \omega^{2} a \cos B, \qquad (1.7)$$

$$The a - formula for yoch эллипсоида;
$$\omega - yrnoBag correst вращения Земли;$$$$

*M*₃ – масса Земли;

А,В и С – главные моменты инерции Земли;

*С*_{*е*} – центробежная сила на экваторе.

Формула Клеро (1.6) справедлива до малых первого порядка. Более точную формулу распределения силы тяжести на поверхности эллипсоида, исходя из теории Стокса, вывели в 1929 г. итальянские геодезисты У. Сомильяна и П. Пицетти [14]:

$$g = \frac{a \cdot g_e \cdot \cos^2 B + b \cdot g_P \cdot \sin^2 B}{\sqrt{a^2 \cdot \cos^2 B + b^2 \cdot \sin^2 B}}.$$
(1.9)

Разложив знаменатель равенства (1.9) в степенной ряд и вводя обозначения для β и α₂ из группы формул под номером (1.8), получим первую формулу Клеро с членам второго порядка малости:

$$g = g_e \left(1 + \beta \cdot \sin^2 B - \beta_1 \cdot \sin^2 2B\right),$$
(1.10)

$$\beta = \frac{5}{2}q - \alpha - \frac{17}{14} \cdot q \cdot \alpha,$$

rge

$$\alpha + \beta = \frac{5}{2}q - \frac{17}{14}\alpha \cdot q,$$
(1.11)

или

$$\beta_1 = \frac{5}{8}q \cdot \alpha - \frac{1}{8} \cdot \alpha^2. \tag{1.12}$$

Формулы (1.10) и (1.11) составляют теорему Клеро с членами второго порядка малости. Коэффициент второго порядка малости β_1 характеризует сфероидальность Земли.

Численные значения коэффициентов g_e , β и β_1 определил в 1909 г. немецкий геодезист Гельмерт Фридрих Роберт (1843–1917). В период с 1901 по 1909 г. он обработал по способу наименьших квадратов 1 603 значения силы тяжести и получил формулу для вычисления значений силы тяжести γ_0 на поверхности эллипсоида:

 $\gamma_0^{\Gamma} = 978\ 030(1+0,005302 \cdot \sin^2 B - 0,0000071 \cdot \sin^2 2B).$ (1.13)

Для нормальной Земли $\Delta \gamma_0 = \gamma_P - \gamma_e = 5,2$ Гал, что составляет 0,53 % от $\overline{\gamma}_0 = 981$ Гал.

При $a = 6,387 \cdot 10^6$ м, $\omega = 7,292 \cdot 10^{-5}$ рад/с = 15,04 ′′/с,

 $\Delta \gamma_0 - C_e = 5, 2 - 3, 4 = 1, 8$ Гал или 0,18 % от $\overline{\gamma}_0$.

Формула Гельмерта (1.13) принята в России в качестве основной при измерений, обработке гравиметрических так как сжатие эллипсоида, вычисленное гравиметрическим по данным, близко таковому к по геодезическим данным:

$$\gamma^{\Gamma} = \frac{5}{2} \cdot \frac{C_e}{g_e} - \frac{g_P - g_e}{g_e} = \frac{1}{296, 4}.$$

В 1930 г. в качестве международной была принята формула Кассиниса:

 $\gamma_0^K = 978\ 049\left(1+0,0052884\cdot\sin^2\ B-0,0000059\cdot\sin^2\ 2\ B\right), \quad (1.14)$

рассчитанная для эллипсоида Хейфорда. Она широко применяется за рубежом. Для перехода от γ_0^K к γ_0^Γ существует зависимость:

$$\gamma_0^{\Gamma} = \gamma_0^K - (19, 0 - 13, 2 \cdot \sin^2 2B).$$
 (1.15)

Следует отметить, что в формулах (1.13) и (1.14) коэффициент γ_0 вычислен в Потсдамской гравиметрической системе, в которой обнаружена ошибка в определении силы тяжести на исходном пункте Потсдам в +13,87 мГал. Поэтому в рассчитанные по этим формулам значения вводят поправку, равную –14 мГал.

В 1971 г. на XV Генеральной ассамблее международного геодезического и геофизического союза была принята новая формула для вычисления:

 $\gamma_0 = 978 \ 031,85(1+53,024\cdot 10^{-4} \cdot \sin^2 B - 59\cdot 10^{-7} \cdot \sin^2 2B), (1.16)$

соответствующая референцной системе 1967 г. Система задана независимыми величинами (фундаментальными геодезическими постоянными), полученными из наблюдений космических летательных аппаратов:

 $f \cdot M = 398\ 603\ \text{кm}^3 \text{ c}^{-2}$ – геоцентрическая гравитационная постоянная;

a = 6 378 160 м – большая полуось эллипсоида;

 $J_2 = 10\ 827 \cdot 10^{-7}$ – зональный гармонический коэффициент; $M = 5,976 \cdot 10^{24}$ кг – масса Земли;

 $\omega = 7,2921151467 \cdot 10^{-5}$ рад/с – угловая скорость вращения Земли; Зная J_2 , можно вычислить сжатие эллипсоида:

$$\alpha = \frac{3}{2}J_2 + \frac{W^2 \cdot a^2}{f \cdot M} = 1/298,249.$$
(1.17)

Для перехода от $\gamma_{0(1930)}$ к $\gamma_{0(1971)}$ существует зависимость:

$$\gamma_{0(1971)} - \gamma_{0(1930)} = -17, 2 + 13, 6 \cdot \sin^2 B$$
 мГал. (1.18)

Формула для вычисления γ_0 , принятая в 1971 г., получена из наблюдений ИСЗ, движущихся вне атмосферы. Поэтому следует иметь ввиду, что масса Земли включает массу атмосферы равную 5,1 \cdot 10¹⁸ кг.

С 1980 г. используется уточненная формула для вычисления γ_0 :

 $\gamma_0 = 978032, 68 \cdot (1 + 53, 024 \cdot 10^{-4} \cdot \sin^2 B - 59 \cdot 10^{-7} \cdot \sin^2 2B).$ (1.19)

На поверхности Земли величина силы тяжести зависит от следующих факторов:

- Широта места наблюдения;
- Высота точки над поверхностью эллипсоида;
- Плотностные и структурные неоднородности внутри земли;
- Приливное влияние луны и солнца;
- Притяжение атмосферы.

Внутри Земли сила тяжести меняется по закону, проиллюстрированному на рис. 1.2.

g, Гал

Рис. 1.2. Изменение плотности р и ускорение силы тяжести двнутри Земли

Если бы плотность рвещества в Земле была постоянной, то сила тяжести уменьшалась бы равномерно с глубиной (*H*). В действительности, ρ возрастает с глубиной, о чем свидетельствуют данные сейсмологии.

От поверхности Земли и до глубины около 2 500 км сила тяжести практически неизменна и составляет около 980 Гал. На границе мантия-ядро (2 900 км) сила тяжести возрастает до 1 000 Гал, а затем плавно уменьшается к центру Земли до 0 Гал.

1.3. Аномалии силы тяжести

Конечным продуктом гравиметрических работ является карта аномалий силы тяжести.

Аномалия силы тяжести – разность между величинами действительной (измеренной) g и нормальной силы тяжести γ_0 в пункте наблюдений:

$$\Delta g = g - \gamma \,. \tag{1.20}$$

Величина у вычисляется по формуле:

$$\gamma = \gamma_0 + \frac{\partial \gamma}{\partial H} \cdot H , \qquad (1.21)$$

где γ_0 – нормальное значение силы тяжести, вычисляемое по формуле Гельмерта, мГал;

 $\frac{\partial \gamma}{\partial H} = -0,3086$ мГал/м – вертикальный градиент нормальной силы тяжести;

H – геодезическая высота, м.

По результатам обработки гравиметрических и геодезических материалов строят гравиметрические карты аномалий силы тяжести.

В практике геофизических работ используют, в основном, два типа аномалий силы тяжести.

1. Аномалия в свободном воздухе ($\Delta g_{C.B.}$):

 $\Delta g_{C,B} = g - \gamma_0 + 0,3086 \cdot H,$

где 0,3086 · H – поправка за геодезическую высоту точки наблюдения. 2. *Аномалия Буге* ($\Delta g_{\overline{b}}$):

(1.22)

 $\Delta g_{B} = g - (\gamma_{0} - 0, 3086 \cdot H + 0, 0419 \cdot \overline{\rho} \cdot H - \delta g_{p} (\overline{\rho})), \qquad (1.23)$

где $0,0419 \cdot \overline{\rho} \cdot H$ – притяжение плоскопараллельного (промежуточного) слоя толщиной *H* с плотностью $\overline{\rho} = 2,67$ г/см³, заключенного между уровнем точки наблюдения и поверхностью эллипсоида (поправка Буге).

δg_p – поправка за влияние рельефа местности.

Для учета влияния окружающего рельефа используют различные способы, например: разбиение местности на участки, представляющие собой криволинейные призмы с наклонной верхней гранью, учет поправки по характерным формам рельефа и др. Наиболее широкое применение на практике нашли способы, разработанные П.И. Лукавченко, В.М. Березкиным, Е.А. Мудрецовой, а также методики, предложенные А.И. Каленицким, В.П. Смирновым и Г.Г. Ремпелем [11, 18, 19, 30].

Свойства аномалий силы тяжести и области их применения

При решении вопроса о фигуре Земли необходимо строгое сохранение условия Стокса: «...уровенная поверхность потенциала силы тяжести целиком охватывает все массы» [12, 25, 35], т. е. общая масса Земли и форма уровенной поверхности не должны меняться или изменяться, по возможности, мало.

При вычислении аномалии силы тяжести Δg_{CB} вводится поправка за высоту точки наблюдения. Эта редукция «переносит» значение γ_0 с эллипсоида в точку измерений без участия масс промежуточного слоя – массы Земли остаются не тронутыми.

Нормальное поле построено для эллипсоида, охватывающего все массы. Аномалии силы тяжести с редукцией в свободном воздухе Δg_{CB} являются отклонением реально наблюдающейся в данной точке силы тяжести от ее нормального значения. В этом смысле величина Δg_{CB} отражает истинное гравитационное поле [12], если высоты определены от поверхности эллипосида, иначе – смешанное.

Редукция в свободном воздухе очень мало искажает геоид:

$$dS = \frac{dW}{\gamma} = -\frac{\pi \cdot f \cdot \overline{\rho} \cdot H^2}{\gamma}.$$
 (1.24)

Для целого континента толщиной H = 1 км и $\overline{\rho} = 2,5$ г/см³:

$$dS = -\frac{3.14 \cdot 6.67 \cdot 10^{-8} \cdot 2.5 \cdot 10^{10}}{980} \approx 6 \text{ cm} (5.7 \text{ cm}).$$

При вычислении аномалий силы тяжести с редукцией Буге Δg_{E} поправка за промежуточный слой исключает его влияние. Удаление масс между уровнем

отнесения величины γ₀ и уровнем точки наблюдения нарушает условие Стокса – неизменность общей массы. Кроме того, происходит значительная деформация уровенной поверхности.

При введении поправки Буге

$$dS = \frac{dW}{\gamma} = -\frac{2\pi \cdot f \cdot \overline{\rho} \cdot H^2 \cdot a}{\gamma}.$$
 (1.25)

При исключении влияния острова толщиной H = 1 км и радиусом R = 100 км с плотностью пород $\overline{\rho} = 2,5$ г/см³

$$dS = \frac{2 \cdot 3,14 \cdot 6,67 \cdot 10^{-8} \cdot 2,5 \cdot 10^5 \cdot 10^7}{980} \approx 10 \,\mathrm{m}.$$

Такова величина искажения геоида в случае регуляризации методом введения поправки Буге (операция устранения масс, выступающих над уровенной поверхностью). Поэтому $\Delta g_{\mathcal{B}}$ не пригодны для изучения фигуры Земли. Но при этом, в аномальном поле рельефнее проявляются аномальные массы, что нужно для целей гравиразведки.

При редукции Буге необходимо вводить поправки за окружающий рельеф.

Аномалии силы тяжести в редукции Буге на большей части Земли составляют в среднем 42,4 мГал. Максимальное значение – +660 мГал (о. Гавайи), минимальное –380 мГал – желоб Пуэрто-Рико (Атлантический океан).

1.4. Уклонение отвеса

любой B точке Μ земной поверхности 1.3) отвес (рис. устанавливается ПО линии, совпадающей С направлением действия силы тяжести Ng . Это направление перпендикулярно к уровненной поверхности W = C. проходящей через данную точку М. Рассмотрим общий земной эллипсоид (O3), наилучшим образом представляющий Земли фигуру [12, 28, 35]. общем В случае поверхность W = C не параллельна поверхности ОЗЭ. Проведем нормаль пп к ОЗЭ через точку М. Угол NMn – абсолютное, или гравиметрическое (уклонение отвесной V_{q}) линии. Обработка всех геодезических измерений производится на референцэллипсоиде (РЭ) данного государства. Проведем нормаль n_1n_1 к референц-

Рис. 1.3. Отсчетные поверхности и нормали к ним

эллипсоиду в точке М. Угол NMn_1 между направлением отвесной линии и нормалью к поверхности РЭ называется относительным или астрономогеодезическим уклонением отвесных линий ($v_{A\Gamma}$):

 $v_{A\Gamma} = v_g - \Delta v \,,$

где Δv – угол между нормалями к ОЗЭ и к РЭ

Астрономические координаты (ϕ и λ) контролируются направлением отвесной линии, а геодезические широты и долготы (*B* и *L*) определяются положением нормали к референц-эллипсоиду. Следовательно, уклонения отвесных линий получаются как разность астрономических и геодезических координат.

Для практических целей нужно знать проекции v_g на плоскость меридиана (ξ) и плоскость первого вертикала (η). Эти составляющие необходимы для перехода от астрономических к геодезическим координатам и обратно (рис. 1.4). На рис. 1.4:

P – полюс мира;

g – вектор силы тяжести на поверхности Земли в точке М;

n – нормаль к ОЗЭ;

*n*₁ – нормаль к референц-эллипсоиду;

— вектор нормальной силы тяжести на поверхности ОЗЭ;

*Z*_г – геодезический зенит;

*Z*_{*A*} – астрономический зенит;

*Z*₁ – нормальный зенит;

*PZ*_г – геодезический меридиан;

*PZ*_A – астрономический меридиан;

*Z*_{*A}<i>Z*₂ – первый вертикал;</sub>

 $PZ_{\Gamma} = 90^{\circ} - B$ – дополнение геодезической широты до 90° ;

 $PZ_A = 90^\circ - \phi$ – дополнение астрономической широты до 90°;

 $PZ_1 = 90^\circ - B_n$ – дополнение нормальной широты до 90° ;

B, φ, *B_n*- широты: геодезическая, астрономическая и нормальная соответственно;

 $\Delta \lambda = \lambda - L$ – разница астрономической и геодезической долготы;

 $Z_1 Z_A$, $Z_{\Gamma} Z_A$ – гравиметрическое (v_g) и астрономо-геодезическое ($v_{A\Gamma}$) уклонение отвесной линии, соответственно;

 Z_1Z_2 – проекция ν_{g} на плоскость меридиана ξ_B ;

 $Z_{\Gamma}Z_2$ – проекция $v_{A\Gamma}$ на плоскость меридиана $\xi_{A\Gamma}$,

 $Z_A Z_2$ – проекции v_g и $v_{A\Gamma}$ на плоскость первого вертикала – η_g и $\eta_{A\Gamma}$.

Рис. 1.4. Связь астрономических игеодезических координат

По рис. 1.4 видно, что связь между астрономо-геодезическими $V_{A\Gamma}$ и гравиметрическими V_g

уклонениями отвеса имеет вид:

$$\xi_{A\Gamma} = \xi_g + \Delta B,$$

где $\Delta B = B_n - B;$
 $Z_2 P = 90^\circ - (B + \xi_{A\Gamma}).$

Из прямоугольного сферического треугольника $Z_2 Z_A P$ по правилу Непера – Модюи запишем:

$$\begin{cases} \cos \Delta \lambda = \cos (\lambda - L) = \operatorname{ctg} (90^\circ - \varphi) \cdot \operatorname{tg} [90^\circ - (B + \xi_{A\Gamma})] = \operatorname{tg} \varphi \cdot \operatorname{ctg} (B + \xi_{A\Gamma});\\ \sin \eta = \sin (90^\circ - \varphi) \cdot \sin (\lambda - L) = \cos \varphi \cdot \sin (\lambda - L). \end{cases}$$

Разложим функции косинуса и синуса в ряд. Пренебрегая квадратичными членами, получим:

$$B = \varphi - \xi_{A\Gamma};$$

$$\xi = \varphi - B;$$

или

$$L = \lambda - \eta \cdot \sec \varphi;$$

$$\eta = (\lambda - L) \cdot \cos B.$$

Существует 3 способа определения уклонен

Существует 3 способа определения уклонения отвесной линии.

Астрономо-геодезический.

Гравиметрический.

Астрономо-гравиметрический.

Гравиметрическое уклонение v_g получим из прямоугольного треугольника ONg, в котором угол NOg = v_g (рис. 1.5):

$$tgv_g = \frac{g_S}{\gamma}.$$
 (1.27)

Рис. 1.5. Гравиметрическое уклонение отвеса

По малости v_g (около одной минуты), разложив функцию tg в ряд и ограничившись первым членом разложения, получим:

$$v_g = \frac{g_s}{\gamma}, \qquad (1.28)$$

где γ и g_s – составляющие силы тяжести по направлениям: нормали γ и касательной *S* к ОЗЭ. Первая составляющая близка к среднему значению нормальной силы тяжести $\overline{\gamma}$ на поверхности ОЗЭ, а вторая обусловлена действием потенциала силы тяжести W и равна:

$$g_s = \frac{\partial W}{\partial S}.$$
 (1.29)

Потенциал силы тяжести на земной поверхности есть сумма нормального *U*и возмущающего *T* потенциалов:

$$W = U + T$$
. (1.30)
С учетом (1.29) и (1.30) выражение (1.28) примет вид:
 $v_g = -\frac{1}{\gamma} \left(\frac{\partial U}{\partial S} + \frac{\partial T}{\partial S} \right)$. (1.31)

Так как силовые линии нормального поля на поверхности геоида перпендикулярны к эллипсоиду, то:

$$\begin{aligned} \frac{\partial U}{\partial S} &= 0;\\ (1.32)\\ v_g &= -\frac{1}{\gamma} \cdot \frac{\partial T}{\partial S};\\ T &= \gamma \cdot \xi, \end{aligned}$$

Найдем частную производную $\partial T / \partial S$ из формулы Брунса. Подставив ее в формулу (1.32), получим:

$$v_g = -\frac{1}{\gamma} \cdot \gamma \left(\frac{\partial \zeta}{\partial S}\right) = -\frac{\partial \zeta}{\partial S}.$$
 (1.33)

Гравиметрическое уклонение отвесной линии есть частная производная превышения геоида над эллипсоидом по направлению наибольшего изменения потенциала силы тяжести на эллипсоиде или то же самое – наибольшего изменения высот.

Значение ζ задается формулой Стокса:

$$\zeta = \frac{R}{4 \pi \gamma} \int_{0}^{\pi 2} \int_{0}^{\pi} \Delta g_{CB} \cdot S(\psi) \cdot \sin \psi \cdot d\psi \cdot dA, \qquad (1.34)$$

где $S(\psi) - ф$ ункция Стокса;

$$S(\psi) = 1 + \csc\frac{\psi}{2} - 6\sin\frac{\psi}{2} - 5\cos\psi - 3\cos\psi \cdot \ln\left(\sin\frac{\psi}{2} + \sin^2\frac{\psi}{2}\right), (1.35)$$

где ψ – сферическое расстояние между определяемой M (ϕ_0, λ_0) и текущей N (ϕ, λ) точками (рис. 1.6);

Рис. 1.6. Сферический треугольник

A – азимут линии MN;

 $\Delta g_{\rm CB}$ – аномалия силы тяжести с редукцией в свободном воздухе.

Для получения составляющих уклонения отвеса в меридиане (ξ) и в первом вертикале (η) необходимо выражение (1.33) продифференцировать по широте ϕ_0 и долготе λ_0 .

В первом случае $\partial S = \overline{R} \cdot \partial \phi_0$, а во втором

 $\partial S = \overline{R} \cdot \cos \varphi_0 \cdot \partial \lambda_0,$

где φ₀ и λ₀ – координаты точки, в которой определяются уклонение отвесной линии;

R – средний радиус Земли.

Тогда:

$$\xi = -\frac{1}{\overline{R}} \cdot \frac{\partial \zeta}{\partial \varphi_0}; \quad \eta = -\left(\frac{1}{R \cdot \cos \varphi_0}\right) \cdot \frac{\partial \zeta}{\partial \lambda_0}. \quad (1.36)$$

Подставив выражение (1.35) в (1.36), получим:

$$\xi = -\frac{1}{4 \pi \gamma} \int_{0}^{\pi 2} \int_{0}^{\pi} \Delta g \operatorname{CB} \frac{\partial S(\psi)}{\partial \phi_0} \sin \psi \cdot d\psi \cdot dA$$

$$\eta = -\frac{1}{4 \pi \gamma \cdot \cos \phi_0} \int_{0}^{\pi 2} \int_{0}^{\pi} \Delta g \operatorname{CB} \frac{\partial S(\psi)}{\partial \lambda_0} \sin \psi \cdot d\psi \cdot dA$$

$$\left\{ \begin{array}{c} (1.37) \\ \end{array} \right\}$$

Определив из решения сферического треугольника (рис. 1.6) ψ , $d\psi$, $\sin \psi$, продифференцировав выражение (1.37) по φ_0 и λ_0 и выполнив несложные математические преобразования, получим выражения для составляющих ξ и η в виде [12]:

$$\begin{cases} \xi \\ \eta \end{cases} = -\frac{1}{4\pi\gamma} \int_{0}^{\pi^{2}\pi} \int_{0}^{\alpha} \Delta g_{CB} \frac{\partial S(\psi)}{\partial \psi} \begin{cases} \cos A \\ \sin A \end{cases} \sin \psi \cdot d\psi \cdot dA.$$
(1.38)

Чтобы получить ξ и η в секундах дуги, умножим выражение (1.38) на ρ″и введем обозначение:

$$-\frac{\rho''}{2\gamma} \cdot \frac{\partial S(\psi)}{\partial \psi} \sin \psi = Q(\psi) - \phi$$
ункция Веннинг-Мейнеса. (1.39)

Функция Веннинг-Мейнеса непрерывна во всей области, кроме точки $\psi = 0$. Строгая формула для вычисления *Q*имеет вид:

$$Q(\psi) = \frac{\rho''}{2\gamma} \cos^2 \frac{\psi}{2} \left[\cos ec \frac{\psi}{2} + 12 \sin \frac{\psi}{2} - 32 \sin^2 \frac{\psi}{2} + 3 / \left(1 + \sin \frac{\psi}{2} \right) - 12 \sin^2 \frac{\psi}{2} \ln \left(\sin \frac{\psi}{2} + \sin^2 \frac{\psi}{2} \right) \right].$$
 (1.40)

Исследование функции $Q(\psi)$ выполнил В.Ф. Еремеев [15]. Числовые значения функции $Q(\psi)$ приведены в табл. 1.1, а ее ход показан на рис. 1.7.

Ψ	0°	1°	10°	20°	30°	72°	80°	180°
$Q(\psi)$	∞	+12,370	+1,591	+1,02	+0,79	0	-0,15	0

Таблица 1.1. Значения функции Венинг-Мейнеса

Рис. 1.7. График изменения хода функции Венинг-Мейнеса

По табл. 1.1 и рис. 1.7 видно, что функция Венинг-Мейнеса быстро убывает в пределах от 0 до 20°, а от 20° до 180° – близка к нулю.

Это указывает на возможность разделить область интегрирования на две: от 0 до 10° и по всей остальной площади.

Если интегрирование вести в пределах от 0 до 10°, то функцию Q можно упростить, разложив ее по малости ψ в ряд. Ограничившись первым порядком малости ψ , получим приближенное значение Q_1 функции Веннинг-Мейнеса:

$$Q_1 = \frac{\rho''}{2\gamma} \left(\frac{2}{\psi^{\circ}} + \frac{42}{12} \psi^{\circ} + 3 \right).$$
(1.41)

Заменим угловое расстояние ψ° линейным *r* по дуге большого круга:

$$r = \overline{R}\psi = \overline{R}\psi^{\circ} \cdot \frac{2\pi}{360}.$$

Получим:

$$\psi^{\circ} = \frac{360\,r}{2\,\pi\overline{R}}\,.\tag{1.42}$$

Подставив (1.42) в (1.41), получим:

$$Q_1 = \frac{\rho''}{2\gamma} \left(\frac{4\pi\overline{R}}{360} \cdot \frac{1}{r} + \frac{49}{12} \cdot \frac{360}{2\pi\overline{R}} \cdot r + 3 \right).$$

Полагая, что $\rho'' = 20\ 6265$, $\gamma = 981\ 000\ \text{м}$ Гал, $\overline{R} = 6\ 371\ \text{км}$, и обозначая постоянные коэффициенты через А,В и С, получаем:

$$Q_1 = \frac{A}{r} + B \cdot r + C, \qquad (1.43)$$

где A = 1 339,6; $B = 66 \cdot 10^{-6}$, C = 0,315.

В выражении (1.43) первые слагаемые при малых значениях r являются определяющими. Поэтому принято выделять центральную зону от 0 до r_0 , где величину Q_1 можно найти по формуле:

$$Q_1 = \frac{1340}{r}.$$

С учетом вышеизложенного, величины составляющих уклонения отвеса ξ'' и η'' и высоты квазигеоида вычисляются по формулам:

$$\begin{cases} \xi'' \\ \eta'' \end{cases} = -\frac{1340}{2 \pi R} \int_{0}^{r_0} \int_{0}^{2\pi} \frac{\Delta g}{r} \begin{cases} \cos A \\ \sin A \end{cases} dr \cdot dA - \frac{1}{2 \pi R} \int_{r_0}^{r_1} \int_{0}^{2\pi} \Delta g Q_1 \begin{cases} \cos A \\ \sin A \end{cases} dr \cdot dA;$$

$$\zeta_{,_M} = \frac{1}{2 \pi \gamma} \left[\int_{0}^{r_0} \int_{0}^{2\pi} \Delta g \cdot dr \cdot dA + \int_{0}^{r_1} \int_{0}^{2\pi} \Delta g \cdot F(r) \cdot dr \cdot dA \right],$$

(1.44)

где F(r) = A ln r +
$$\frac{B}{2}r^2 + c \cdot r$$
.,
где $\Delta g = \Delta g_{CB}$ - см. обозначения на стр. 23.

По известным аномалиям силы тяжести в свободном воздухе по формулам (1.44) можно вычислить составляющие уклонения отвесной линии в меридиане ξ'' и в первом вертикале (η"). Влияние аномалий силы тяжести необходимо учитывать в области от 0° до 20° (от 0 до 2 000 км).

1.5. Гравиметрические данные в задачах инженерной геодезии

Монтаж оборудования в большинстве случаев ведут с относительной погрешностью 10⁻⁴–10⁻⁵ (1мм на 100 м), а съемочные работы – с еще меньшей точностью. При этом гравитационное поле в пределах стройплощадки считается однородным.

При работах с относительными погрешностями порядка 10^{-5} – 10^{-6} гипотеза однородности поля силы тяжести перестает себя оправдывать и поэтому приходится переходить от материализованной прямоугольной координатной системы к координатной системе, в которой учитывается положение силовых линий – кривая, касательная к которой в каждой точке совпадает с вектором силы тяжести (рис 1.8).

Силовые линии – плоские кривые, обращенные выпуклостью к экватору. Они имеют кривизну, не параллельны друг другу.

Вместе С силовыми линиями поверхности, искривляются И ортогональные им. Эти поверхности называют уровенными, или эквипотенциальными поверхностями равного потенциала: W = C. В таких условиях работать геодезисту становится трудно.

Ho. если принимать не BO внимание все сказанное, то точность 10⁻ недосягаемой. При останется неоднородном поле силы тяжести будет наблюдаться отклонение оси вращения теодолита от координатной линии Z (силовая линия). Поэтому при

Рис. 1.8. Силовое поле геоида

измерениях геодезических величин (линий, углов, превышений) необходимо учитывать уклонения отвесных линий.

1.5.1. Поправка в измеренное горизонтальное направление

Горизонтальное направление – линия пересечения вертикальной плоскости, проходящей через отвесную линию (вертикальную ось теодолита) и наблюдаемый пункт, с горизонтальной плоскостью (плоскостью лимба теодолита).

Пусть M – пункт на поверхности Земли (рис. 1.9), S – сфера произвольного радиуса с центром в точке M, n – нормаль к эллипсоиду. Она пересекает S в геодезическом зените – точке Z. Направление отвесной линии, контролируемое вектором силы тяжести \overline{g} , дает в пересечении со сферой астрономический зенит – точку Z_g ; v – уклонение отвеса; MQ – измеренное направление на пункт Q.

Требуется получить редуцированное (исправленное) направление $Z_g Q$. Проведем через Z_g линию ЛЛ, параллельную $Z_r Q$. Угол δ_1 между ЛЛ и направлением $Z_g Q$ является поправкой в горизонтальное направление.

Опустим перпендикуляр из Z_g на направление Z_rQ . Тогда v можно разложить на составляющие $v_A = Z_rQ$ в азимуте редуцированного направления и $v_{A+90^\circ} = Z_g K$ – в перпендикулярном направлении.

Рис. 1.9. Поправка в измеренное горизонтальное направление

Из прямоугольного треугольника $Z_g nQ$: $\cos(90^\circ - \delta_1) = \operatorname{tgv}_{A+90^\circ} \cdot \operatorname{ctg} Z_a$, (1.45)

где Z_a – астрономическое зенитное расстояние точки Q.

По малости *v*, которое обычно не превышает нескольких секунд, можно записать:

 $\delta_1 = v_{A+90^\circ} \cdot \operatorname{ctg} Z_a . \tag{1.46}$

Применив формулу составляющей отвеса в произвольном азимуте А $v = \xi^{ar} \cdot \cos A + \eta^{ar} \sin A$, (1.47) найдём: $v_{A+90^{\circ}} = \eta^{ar} \cdot \cos A - \xi^{ar} \cdot \sin A$. (1.48) Формулу (1.48) подставим в (1.46) и получим окончательное выражение поправки δ_1 за уклонение отвеса:

 $\delta = \left(-\xi^{ar} \cdot \sin A + \eta^{ar} \cdot \cos A\right) \cdot \operatorname{ctg} Z_{a} . \tag{1.49}$

Составляющие v, ξ и η отклонения отвеса в азимуте A считаются положительными, если луч отвесной линии, направленный вверх, отклоняется от оси Z на северо-восток [4].

Особенностью специальных геодезических сетей являются значительные углы наклона, достигающие 30–40°. При таких углах коэффициент $ctgZ_a$ равен 0,58–0,84, поэтому уклонения отвесной линии нужно знать не грубее точности измерения горизонтальных углов: 0,2″ – 0,4″.

1.5.2. Поправка в зенитное расстояние

Из прямоугольного сферического треугольника $Z_g QK$ (см. рис 1.9) по аналогии Непера – Мадюи запишем:

 $\cos Z_{a} = \cos(v_{A+90^{\circ}}) \cdot \cos QK.$

По малости *v* можно считать, что $\cos(v_{A+90^\circ}) = 1$, а дуга *QK* равна разности геодезического зенитного расстояния точки *Q*: ($Z_{\Gamma} = QZ_{\Gamma}$) и уклонения отвеса v_A в азимуте измеряемого направления: $QK = Z_{\Gamma} - v_A$. Тогда:

 $Z_{\Gamma} = Z_a + v_A. \tag{1.50}$

Поправка в зенитное расстояние одинакова для всех направлений, лежащих в одной вертикальной плоскости по одну сторону от зенита, и она вводится в том случае, если точность измерений Z сравнима с величиной v, т. е. при погрешности m_Z более $\pm 1''$.

1.5.3. Влияние уклонения отвеса на измеряемое расстояние

На рис. 1.10 проиллюстрирована методика учета влияния уклонения отвесной линии на измеряемое расстояние.

Рис.1.10. К определению поправки в измеряемое расстояние

На рис. 1.10: *S* – измеренное расстояние между точками *A* и *B*; $BC = \Delta h$ – превышение *B* над *A* относительно горизонтальной плоскости; \overline{g} – вектор силы тяжести; *v* – уклонение отвесной линии, α – угол наклона линии *AB* относительно горизонта (ГП).

Поправка за угол наклона α дает величину горизонтального проложения AC = b. Однако, на практике редуцирование расстояний ведут не по отвесным линиям, а по координатным (на рис. 1.10 – AZ и BZ). Из-за этого возникает дополнительная поправка δb , равная СД:

$$\delta b = \Delta h \cdot \operatorname{tg} v \,. \tag{1.51}$$

Разложив по малости *v* функцию тангенса в ряд и ограничившись первым членом разложения, получим:

 $\delta b = \Delta h \cdot v \,.$

Если измеряемая линия состоит из нескольких пролетов, и длина ее невелика, то величину *v* можно считать постоянной. Тогда:

 $\delta b = v \cdot \sum \Delta h_i , \qquad (1.52)$

где Δh_i – превышение по *i*-му пролету линии.

1.5.4. Влияние уклонения отвеса на результаты тригонометрического и геометрического нивелирования

Влияние уклонения отвеса на результаты нивелирования проиллюстрировано на рис. 1.11.

Рис. 1.11. К определению влияния уклонению отвеса на результаты нивелирования

На рис. 1.11: S – измеренное расстояние между точками M и $N; \overline{g}$ – вектор силы тяжести (отвесная линия); MZ – направление нормали к

эквипотенциальной поверхности, W = C; ΔH – разность геодезических высот в точках M и N – превышение над уровенной поверхностью W = C, полученное из тригонометрического нивелирования, Δh – превышение между точками M и N, полученное из геометрического нивелирования;b – проекция S на плоскость горизонта (ПГ); α – угол наклона линии MN; v – уклонение отвесной линии; LMN – полуплоскость, проходящая через аппликату Z пункта M в пункт N.

По рис. 1.11 видно, что $\Delta H = S \cdot \sin(\alpha - v) = b \cdot tg((\alpha - v)),$ или $\Delta H = S \cdot \sin \alpha \cdot \cos v - S \cdot \cos \alpha \cdot \sin v.$ (1.53) По малости v (около секунды) примем $\cos v = 1$, $\sin v = v$. Тогда: $\Delta H = S \cdot \sin \alpha \cdot \cos v - v \cdot S \cdot \cos \alpha.$ Втепесь системи в изистеми в изистеми с

Второе слагаемое представляет собой поправку в измеренное превышение ΔH за уклонение отвеса.

Так как $S \cdot \cos \alpha = b$ и $S \cdot \sin \alpha = \Delta h$, получим $\Delta H = \Delta h - v \cdot b$. (1.54)

Следовательно, при средней разности уклонения отвеса 0,5" и расстоянии 2 км влияние уклонения отвеса на разность высот составляет 5 мм.

1.5.5. Редуцирование азимута в шахту

Пусть на поверхности Земли находятся две точки M и N, расстояние между которыми MN = S. Азимут линии MN равен A. На глубине H от поверхности Земли находится шахта, в которую необходимо средуцировать линию MN (рис. 1.12).

Рис. 1.12. Редуцирование азимута в шахту

Спроецируем точки M и N на отсчетную плоскость по нормали – в точки M_0 и N_0 , и по отвесам \overline{g}_M и \overline{g}_N – в точки M_2 и N_2 (соответственно). Линия M_2N_2 получит приращение азимута ΔA , которое необходимо определить.

Проведем через нормали n_M и n_N плоскости, перпендикулярные направлению S (M_0N_0). Они пересекут линию M_2N_2 в точках M_1 и N_1 соответственно.

Расстояния M_0M_1 и N_0N_1 определим через составляющие уклонения отвеса v_1 и v_2 в азимуте А + 90°:

$$M_{0}M_{1} = (v_{A+90^{\circ}})_{M_{1}} \cdot H;$$

$$N_{0}N_{1} = (v_{A+90^{\circ}})_{N_{1}} \cdot H,$$
(1.55)
$$\prod_{1} = -\xi_{1} \sin A + \eta_{1} \cos A$$

$$v_{2} = -\xi_{2} \sin A + \eta_{2} \cos A$$

$$ig\Delta A = \frac{N_{0}N_{1} - M_{0}M_{1}}{M_{1}N_{1}} = \frac{(v_{2} - v_{1}) \cdot H}{S_{0}}.$$
(1.56)

По малости *v*, разложив тангенс в ряд и ограничившись первым членом разложения, получим:

$$\Delta A = -\left(\Delta \xi^{a\Gamma} \cdot \sin A - \Delta \eta^{a\Gamma} \cdot \cos A\right) \cdot \frac{H}{S_0}.$$
(1.57)

Если при редуцировании используются оптические центриры, то $\Delta \xi$ и $\Delta \eta$ определяются в точках M и N на поверхности Земли, а если использованы отвесы, то в точках M_2 и N_2 шахты.

2. УСТРОЙСТВО ГРАВИМЕТРА

Гравиметр – прибор для измерения силы тяжести. Работа гравиметра основана на статическом методе, в котором наблюдают положение равновесия тела, находящегося под действием силы тяжести и силы, принятой за эталонную.

За эталонную силу принимают упругую силу деформации пружин и нитей.

Устройство, с помощью которого компенсируется действие силы тяжести на тело постоянной массы и ее изменение преобразуется в перемещение тела, называется *чувствительным элементом*.

Большинство современных гравиметров являются механическими. Чувствительный элемент такого гравиметра называется упругой системой, которая является главным узлом любого гравиметра.

Существует много типов гравиметров. Первый отечественный кварцевый астазированный гравиметр ГАК-ЗМ был создан в 1953 г. во ВНИИ Геофизики группой специалистов, возглавляемой К.Е. Веселовым. В дальнейшем на его основе были разработаны гравиметры ГАК-ПТ, ГАК-7Т, ГАК-7Ш и др. Наиболее широкое применение на практике нашел гравиметр ГАК-7Т. Погрешность измерения силы тяжести этим гравиметром в зависимости от применяемой методики наблюдения составляет 0,03–0,06 мГал.

Основные характеристики гравиметров приведены в стандарте ГОСТ 13017–83 «Гравиметры наземные. Общие технические условия» и в стандарте СЭВ 5578–86 «Общие технические требования и методы испытаний» [9], а также в табл. 2.1.

Модель, страна- изготовитель	Год выпуска	Порог чувствите льности,м Гал	Точность измерения , мГал	Диапазон безперестр ойки, мГал	Измерения сперестрой кой, мКал	Увеличе ние окуляра	Высота, мм	Наружный диаметр, мм	Масса, кг	Примечания
ГАК-ЗМ, СССР ГАК-4М, СССР	1953 1958	0,05 0,03–0,05	0,05–0,4 0,05–0,2	100–150 80–120	3 000 3 000	200 200	488 465	188 175	8,5 7,5	ГАК – гравиметр астазиро- ванный кварцевый. Первый отечественный астазированный кварцевый гравиметр
ГАК-ПТ, СССР	1960	0,03–0,05	0,05–0,2	100–150	5 000	250	480	180	7,5	ГАК-ПТ – гравиметр астазированный кварцевый, повышенной точности
КВГ-1М, СССР	1961	0,01	0,02–0,08	70–100	3 000	800	390	133	4,2	КВГ – кварцевый высокоточный гравиметр. С 1967 по 1973 г. в соответствии с ГОСТ 13017–67 выпускался под названием ГР-К2; с 1973 г. в соответствии с ГОСТ 13017–73 носит название ГНУ-К2, отличается от ГАК-7Т менее совершенной температурной компенсацией. С 1973 г. в соответствии с ГОСТ 13017–73 называется ГНУ-К1
ГАК-7Т, СССР ГАК-7н, СССР ГАК-7ш, СССР	1963 1963 1963	0,02 0,03–0,05 0,01–0,05	0,03–0,06 0,04–0,05 0,03–0,06	80–120 80–120 80–100 1 000	5 000 3 000	200 200 200	425–470 425 425	210 210 210	5,0 5,0 5,0	
ГАГ-2, СССР «Дельта», СССР	1966 1971	0,005 0,01	0,1–0,15 0,06	5 000 80	5 000	15 600	450 550	350×250 250	25 5,0	
ГР-К-1, СССР «Уорден», США «Шарп», Канада	1972 1948	0,01 0,01 0,01	0,03 0,02–0,08 0,02–0,08	80 80–100	5 000	400 600	425–470 290 400	210 120 140	5,0 2,3 4,5	

Таблица 2.1. Технические характеристики гравиметров

Все типы гравиметров различаются конструктивными особенностями устройства упругих систем, что влияет на их точностные характеристики. Механическая часть у всех гравиметров остается практически неизменной, что упрощает процесс изготовления и наладки чувствительных систем.

В данном разделе рассматривается устройство и работа гравиметра наземного узкодиапазонного кварцевого второго класса точности ГНУ-КВ [11, 27, 28, 36].

Этот гравиметр применяется для детальных разведочных работ. Погрешность измерения им силы тяжести в рейсах продолжительностью не более 4 часов составляет $\pm 0,03$ мГал, порог чувствительности $\pm 0,006$ мГал. Вес прибора 4,5 кг.

На рис. 2.1 представлен гравиметр. На внутренней поверхности, на дне и под крышкой футляра укреплены поролоновые амортизаторы, обшитые тканью.

Рис. 2.1. Гравиметр: а) внутренняя часть прибора; б) общий вид прибора; в) транспортировочный футляр цилиндрической формы, изготовленный из жести

Средняя часть гравиметра (рис. 2.2) помещена во внешний кожух *1*, который представляет собой полый цилиндр из листовой нержавеющей стали диаметром 132 мм с зеркальной внешней поверхностью.

Рис. 2.2. Составные части гравиметра

Внутрь кожуха помещен цилиндр из пенопласта 2, в который вставляется сосуд Дьюара 3, а в него плотно входит средняя часть гравиметра 5. Уплотнение достигается с помощью шерстяного чехла 4, одеваемого на среднюю часть. Шерстяной чехол выполняет также роль теплоизолятора и предотвращает соприкосновение металла средней части гравиметра со стеклянными стенками сосуда Дьюара, предохраняя, тем самым, последний от разбиения.

Нижний торец цилиндра внешнего кожуха соединен с массивным основанием из текстолита, на котором по окружности, через 120°, укреплены три установочных винта. На нижней части подъемных винтов укреплены шарнирные круглые подпятники, которые увеличивают площадь опоры гравиметра на грунт.

На верхней части винтов находятся головки из эбонита, с помощью которых вращаются подъемные винты. База гравиметра d – расстояние между линией, соединяющей центры двух подъемных винтов и линией, проходящей через третий винт параллельно первой – 120 мм. Средняя часть прибора состоит из основания кварцевой системы, теплозащитного столба и верхней панели (рис. 2.3).

Рис. 2.3. Верхняя панель гравиметра

Средняя часть гравиметра представлена на рис. 2.4.

Основание 16 представляет собой цилиндр, на нижнем торце которого размещается конусообразная стойка 26. На стойку крепится специальная кварцевая втулка 27, к которой приваривается основная монтажная рамка кварцевой системы. Кварцевая система закрепляется защитным «стаканом» 28, который притягивается к основанию специальной кольцевой гайкой 29.

Между основанием и стаканом прокладывается уплотнительное резиновое кольцо 43, обеспечивающее герметизацию защитного стакана. Из пространства под стаканом откачивается воздух. Для этого на боковой поверхности основания имеется отверстие, куда вмонтирован вакуумный кран (рис. 2.8), представляющий собой запорный вентиль 31. С уплотнениями и гайками. Чтобы откачать воздух применяется 2 ключа. Откачка воздуха не требует разборки измерительной части гравиметра. В торец основания ввернуты 3 стойки 33 предохраняющие упругую систему от повреждения при снятии «стакана». В основании имеется пять сквозных, осевых отверстий: два – для измерительного и диапазонного устройства, два – для оптической системы и одно – для термометра. Основание соединено с верхней панелью цилиндром – теплоизолятором 10. Внутри этого цилиндра расположено 5 трубок в которых проходят: стержни измерительного 11 и диапазонного 45 винтов, стержень из оргстекла 20, термометр (рис. 2.4) и оптический канал 44. Для защиты кварцевой системы от теплообмена через верхнюю панель, пространство между трубками заполнено теплоизолирующими материалами.

Рис. 2.4. Средняя часть гравиметра

Верхняя панель (см. рис. 2.3) представляет собой толстый диск из текстолита, служащий одновременно крышкой прибора и пробкой, закрывающей сосуд Дьюара сверху. Панель крепится тремя винтами 13 к фигурному кольцу внешнего корпуса.

Под винты подложены амортизирующие втулки (см. рис. 2.3). На верхней панели размещены: микровинт 2, отсчетное устройство 3, лампочка подсвета с конденсором 9, окуляр микроскопа 12, гнездо для подводки электропитания 8, два уровня 7 и 10 с юстировочными винтами 11, а так же ртутный термометр 6 с ценой деления 0,5 °C для измерения температуры внутри прибора, и отверстие для диапазонного ключа 5.

Гравиметр включает несколько систем: чувствительную, или кварцевую, нивелирования, электрическую, оптическую, диапазонную, вакуумирования и термостатирования.

2.1. Кварцевая упругая система

Главной частью прибора является упругая кварцевая система, изготовленная из чистого кварцевого стекла (плавленый кварц), которая изображена на рис. 2.5. Она состоит из следующих основных узлов: чувствительного элемента, представляющего собой вертикальный сейсмограф Голицина, трех пружин (главной 1, измерительной 2 и диапазонной 3), а также устройства для температурной компенсации 10–15,17.

Все перечисленные элементы смонтированы на кварцевом каркасе 16, который посредством стойки 29 прикреплен к верхнему основанию корпуса гравиметра 30.

Между концами П-образной части монтажной рамки 16 натянута горизонтальная кварцевая нить 9, на которой укреплены измерительная рамка 8 и осевой стержень 25. Этими элементами системы горизонтальная нить разделена на 4 части: нити 6–6 и 9–9.

Чувствительный элемент системы представляет собой рычаг сложной формы, подвешенный на горизонтальных нитях 9 и главной пружине 1. Рычаг состоит изосевого стержня 25, к которому прикреплен горизонтальный стержень 5, нижний отросток 4, задний 26 и вертикальный (Г-образной формы) 20. На конце стержня 5 укреплен платиновый грузик 24. Платиновая навеска служит для увеличения момента масс иисключения прилипания маятника к ограничителю 7. Она также уменьшает действие электростатических зарядов. Вес платинового грузика 0,03 г.

Рис. 2.5. Кварцевая упругая система гравиметра ГНУ-КВ

Температурный компенсатор состоит из горизонтального стержня 10 (первый рычаг температурного компенсатора), один конец которого (с отростком) посредством кварцевых нитей 11 прикреплен к монтажной раме 16. К отростку рычага 10 приварена медная проволочка 12, второй конец которой укреплен на отростке монтажной рамы 16. Ко второму концу кварцевого рычага 10 приварена кварцевая нить 17, второй конец которой соединен со вторым рычагом температурного компенсатора 14, вращающимся на нитях 13.

Главная пружина *1* нижним концом прикреплена к отростку *4* маятника, а верхним – ко второму рычагу температурного компенсатора *14*.

Принцип действия системы заключается в следующем: при изменении силы тяжести маятник 5 будет отклоняться от первоначального положения равновесия до тех пор, пока силы, вызванные деформацией главной пружины и нитей подвеса маятника 9, не уравновесят изменение силы тяжести. Главная пружина соединена с маятником таким образом, что при изменении силы тяжести возникает дополнительный упругий момент силы главной пружины, знак которого совпадает со знаком изменения силы тяжести. Упругий момент, создаваемый главной пружиной 1 примерно в 100 раз больше остальных упругих моментов (диапазонной, измерительной и сил кручения нитей подвеса). Поэтому очень небольшие изменения силы тяжести вызывают большие деформации пружины и, следовательно, большие углы поворота

маятника. Такие системы называются астазированными. При изменении наклона гравиметра изменяется его чувствительность. Если гравиметр наклоняется так, что прибор со стороны груза маятника поднимается относительно горизонта, то чувствительность возрастает. При наклоне в обратную сторону чувствительность уменьшается. Нормальное рабочее положение системы соответствует такому наклону всего прибора, при котором ось вращения маятника и центр тяжести груза лежат в одной горизонтальной плоскости, которая называется главной плоскостью гравиметра. Это положение соответствует минимальной чувствительности гравиметра к наклону.

При повороте маятника, вызванном изменением силы тяжести или компенсирующей силы, чувствительность упругой системы также изменится. тяжести уменьшается (маятник Если сила поднимается вверх), возрастает. При возрастании силы тяжести (маятник чувствительность чувствительность уменьшается. опускается вниз) Если перемещать ПО окулярной шкале положение исходной точки (отсчетного штриха), то чувствительность будет изменяться. Перемещение отсчетного штриха В сторону, соответствующую уменьшению силы тяжести, приводит к уменьшению чувствительности гравиметра, а в сторону, соответствующую увеличению силы тяжести – к увеличению чувствительности. При изменении силы тяжести маятник качается в вертикальной плоскости и вместе с ним перемещается рычаг 20 с горизонтальным стержнем на конце, называемым подвижным индексом (кварцевый стержень 10–15 мкм). Подвижный индекс освещается лучом света от осветителя 19, проходящим через призму23 в микроскоп 18. Подвижный индекс освещается так, что проходящий свет создает интерференционную полосу, соизмеримую с шириной штриха окулярной шкалы. За его изображением наблюдают в микроскоп. Ввиду того, что момент упругих сил измерительной пружины непропорционален углу поворота маятника, его изменение непропорционально приращению силы тяжести. Таким образом, шкала, на которой регистрируют изменение силы тяжести, будет неравномерной. Этот недостаток устраняется тем, что на каждой точке маятник приводят в одно и то же исходное (горизонтальное) положение. Тем самым, изменение силы тяжести компенсируется упругой силой пружин и величину которой можно отсчитывать по равномерной шкале. нитей. Компенсация небольших изменений силы тяжести осуществляется изменением крутильного момента нитей подвеса маятника 9, угол закручивания которых изменяется при повороте рамки 8. Последняя поворачивается из-за растяжения измерительной пружины 2 посредством микрометрического устройства 22, с помощью которого можно измерить величину удлинения пружины. Мерой изменения напряженности поля силы тяжести является число оборотов микрометрического винта, измеряемое отсчетным устройством.
2.2. Система нивелирования

Система нивелирования (см. рис. 2.3) состоит из трех подъемных винтов 14 и двух цилиндрических уровней 7 и 10, оси которых расположены во взаимно перпендикулярных плоскостях. Подъемные винты смонтированы на массивном основании из текстолита и расположены относительно друг друга, по окружности, через 120°. Уровень, ось которого параллельна линии соединяющей два подъемных винта, называется поперечным. Он контролирует горизонтальное положение нити подвеса маятника, которая параллельна оси поперечного уровня.

Уровень, ось которого расположена по направлению третьего винта, называется продольным. Его ось расположена вдоль рычага маятника. Этот уровень контролирует горизонтальное положение маятника.

Цена деления уровней 30". Уровни снабжены юстировочными винтами 11. Если один из винтов выкручивается, другой обязательно должен закручиваться. При выполнении этого условия ампула уровня в оправе жестко фиксируется, что исключает ее смещение.

Диаметр головки установочного винта (на рис. 3.3, δ) – 32 мм. Поэтому длина окружности головки – 100 мм. По скошенному краю головки, по ходу часовой стрелки, нанесены деления через 0,1 оборота винта, оцифрованные 0,1,2...9. Замечая «на глаз» с точностью до 1 мм положение делений относительно индекса на корпусе основания, можно оценить положение установочного винта с ошибкой 0,01 оборота.

Шаг установочного винта гравиметра *а* равен 0,75 мм. При повороте винта, контролирующего продольный уровень, на один оборот гравиметр наклоняется относительно вертикальной оси на угол около 20', т. е. цена оборота установочного винта продольного уровня C_{np} равна 20'. Фиксируя положение винта с точностью до 0,01 оборота, можно определить наклон гравиметра вдоль продольного уровня с ошибкой около 0,2' или 12".

Наклон гравиметра вдоль оси поперечного уровня 4 в вертикальной плоскости, параллельной оси вращения маятника 5 упругой системы, производится одновременным вращением обоих винтов 3 и 6 поперечного уровня в противоположных направлениях. Цена оборота подъемного винта поперечного уровня С _{пп} равна 35':

 $C_{nn} = C_{np} \times \text{tg } 30^{\circ} = 20' \times 1,73 = 35'.$

Фиксируя положение каждого из двух винтов с точностью 0,01 оборота, можно определить наклон гравиметра вдоль поперечного уровня с ошибкой около $0,35' \cdot \sqrt{2} = 30''$.

При высокоточных измерениях силы тяжести необходимо следить за тем, чтобы при нивелировании гравиметра его высота не менялась более чем на 3 мм, что соответствует изменению силы тяжести примерно на 1 мкГал. Обычно прибор нивелируют двумя подъемными винтами при неподвижном третьем.

2.3. Электрическая система

Система состоит из источника электропитания, электрической лампочки, электрического кабеля и системы подключения электроэнергии.

В качестве источника электропитания используются или щелочные аккумуляторы типа СГД-5 емкостью 10 ампер-часов, или плоские батареи для карманного фонаря с выходным напряжением 4,5 В. Для увеличения емкости обычно составляют блок из двух-трех батарей, соединенных параллельно.

Источником света является электрическая лампочка напряжением 2,5 или 3,5 В и током 0,15–0,25 А. Спираль у лампочки должна быть по центру колбы (с «центральным волоском»). Подвод электропитания происходит с помощью двухжильного провода с виниловой изоляцией. На верхней панели гравиметра имеется миниатюрная розетка для подключения вилки с электрическим кабелем 8 (см. рис. 2.4).

Длина электрического кабеля зависит от расстояния до источника электропитания и обычно равна 50–100 см.

2.4. Оптическая система

Оптическая система гравиметра (рис. 2.6)состоит из конденсора 2, создающего равномерное распределение светового потока от электрической лампочки 1, стеклянной призмы 3, обеспечивающей поворот светового луча на 180°, объектива 4 с фокусным расстоянием около 30 см и окуляра 5 с увеличением 20 крат, позволяющего рассматривать изображение индекса маятника 6 на окулярной шкале 7.

Рис 2.6. Оптическая схема гравиметра

Окулярная шкала выполнена на стеклянной пластинке, помещенной в фокусе окуляра. Истинное расстояние между штрихами окулярной шкалы 0,1 мм, а видимое, при увеличении окуляра 20 крат, – 2 мм. Деления шкалы оцифрованы: центральный штрих – 0, а каждый десятый штрих влево и вправо от нулевого цифрами 10, 20, 30.

2.5. Измерительная система

Система предназначена для определения величины отклонения маятника от горизонтального положения под действием силы тяжести.

Основной частью измерительного устройства является микрометренный винт *11* (см. рис 2.3), который одним концом связан с подвижным штоком *38*, а другим – с отсчетным устройством 7. С подвижным штоком микровинт связан через шарик *14*. Постоянный контакт между ними обеспечивается люфтовыбирающей пружиной *42*.

Измерительная пружина кварцевой системы 2 (см. рис 2.5) одним концом прикреплена к кварцевому стержню 20, который запрессован в металлический подвижный шток 38. Изменением натяжения пружины маятник упругой

системы приводится вгоризонтальное положение. Величина угла поворота микрометрического винта является мерой изменения силы тяжести, которая определяется счетчиком (рис. 2.7).

Рис. 2.7. Отсчетное устройство гравиметра

Счетчик состоит из 3-х дисков. На первом диске *1* нанесены штрихи, пронумерованные через один четными цифрами. По нему отсчитываются целые обороты микровинта относительно отсчетного индекса *5*. Если, например, отсчетный индекс находится между цифрами 7 и 8, то следует записывать семь оборотов. Шкала оборотов имеет 15 делений.

На другом (основном) диске 3, соединенном с микровинтом 4, нанесено 100 делений. Каждый пятый штрих удлинен. Каждое десятое деление подписано цифрами от 0 до 90. Подписи делений «идут» против часовой стрелки. По этой шкале снимаются десятые и сотые доли оборота микровинта. При этом, отсчетным индексом является нулевой штрих третьей шкалы – нониуса 2. По ней снимаются тысячные доли оборота. Шкала имеет 10 делений. Пятый штрих длиннее остальных. Длина шкалы равна 19 делениям основной шкалы. Тысячная доля оборота соответствует порядковому номеру штриха шкалы-нониуса, который точно совпал с каким либо делением основной шкалы. Снятие тысячных долей оборота микровинта аналогично снятию десятых долей миллиметра на штангенциркуле. Если нулевой штрих шкалы расположен например, между 90 и 91 штрихом основной шкалы, то следует записать 90 сотых. Пример снятия отсчета по шкале гравиметра приведен на рис. 2.7: отсчет по гравиметру равен 7,909 оборота.

Микровинт имеет шаг (расстояние между витками резьбы) 0,5 мм. Погрешность микрометрического винта, как правило, не превышает 10 микрон (1 мк = $1 \cdot 10^{-6}$ м).

Жесткость измерительной пружины подбирается такая, чтобы один оборот микровинта, перемещающегося на 0,5 мм, соответствовал изменению силы тяжести на 6–8 мГал. Полный ход микровинта 7,5 мм (15 оборотов), что соответствует диапазону измерения силы тяжести без перестройки 90–120 мГал.

2.6. Диапазонная система

Система служит для перестройки диапазона измерения силы тяжести на другой интервал, допустим от 100 до 200 мГал. Устройство состоит из диапазонной пружины 3 (см. рис. 2.5), нижний конец которой прикреплен к заднему отростку рычага маятника 26, а верхний приварен к подвижному штоку диапазонного винта 21. Жесткость диапазонной пружины в 50–80 раз больше жесткости измерительной. Она такова, что перемещение штока на 0,5 мм (на один оборот) соответствует изменению силы тяжести на 200–300 мГал. Полный ход винта 5–7 мм. Таким образом, изменение полного диапазона измерения силы тяжести будет составлять 2 000–3 000 мГал. Подвижный шток имеет в верхней части шлиц под отвертку, с помощью которой перестраивается диапазон измерения силы тяжести. Например, если изображение маятника «ушло» в левую (тяжелую) сторону, то диапазонный винт необходимо вращать против часовой стрелки, т. е. винт надо вращать всегда в ту сторону, где находится маятник.

Для обеспечения герметичности корпуса упругой системы подвижные штоки измерительного и диапазонного устройств заключены в сильфоны *30* (см. рис. 2.4), представляющие собой гофрированные металлические цилиндры, способные сжиматься и растягиваться, обеспечивая при этом вакуум в объеме, где находится упругая система. Сильфон припаивается к корпусу микрометрического и диапазонного винтов. Общее удлинение сильфона при растяжении и сжатии пружины – около 12 мм.

2.7. Вакуумное устройство

Для исключения влияния давления воздуха и температуры на показание гравиметра, из объема, в котором находится кварцевая чувствительная система, откачивается воздух. Откачивание воздуха производят вакуумным насосом через вакуумный кран (рис. 2.8).

Рис. 2.8. Вакуумное устройство (вертикальный разрез)

Вакуумный кран расположен на боковой поверхности основания корпуса кварцевой системы. При откачивании воздуха применяют вакуумный ключ, состоящий из двух частей: внешней 4 и внутренней 3. Ключом 4 отпускается гайка 5, затем в отверстие гайки 5 металлической шайбы 2 и резиновой шайбы 1 вставляется ключ 3, так, чтобы он вошел в шлиц гайки 8. Ключ 3 имеет сквозное отверстие 6. Если повернуть ключ 3 против часовой стрелки, то откроется отверстие, закрываемое иглой 7, и герметическая камера через канал 10 соединится с атмосферой. На штуцер 9 ключа 3 надевается шланг из вакуумной резины, соединенный через манометр с вакуумным насосом. Чтобы воздух не смог проникнуть в герметичную камеру между ключом 3 и прокладкой 1, ключом 4 затягивают гайку 5. Затем ключ 3 поворачивают по часовой стрелке до упора. С помощью ключа 4 отпускается гайка 5 и после этого вынимается ключ 3. Остаточное давление в герметизированном корпусе составляет 1-3 мм рт. ст. (133,3-399,9 Па). Таким образом, вакуумное устройство позволяет откачать воздух из герметичной камеры без разборки средней части гравиметра.

2.8. Термостатирование гравиметра

Под действием температуры изменяются параметры пружин и нитей подвеса маятника, что приводит к кажущемуся изменению силы тяжести. Чтобы исключить влияние температуры на показания прибора, необходимо поместить упругую систему гравиметра В термостат-устройство, поддерживающее постоянную температуру объеме, где находится В чувствительная система. В практике гравиметрических работ применяют или активное или пассивное термостатирование.

Активное термостатирование (рис. 2.9) применяется в маятниковых приборах, в гравиметре ГАГ-2 и, обычно, в гравиметрах с металлической упругой системой. При этом увеличивается вес приборов.

В гравиметрах типа ГНУ-К выполняется пассивное термостатирование. В качестве пассивного термостата используется сосуд Дьюара – стеклянная колба с двойными стенками, из пространства между которыми откачан воздух (рис. 2.10). Толщина стенок – не менее 0,8 мм.

Рис. 2.9. Схема активного термостата

1 – ртутный контактный термометр; 2 – электромагнит; 3 – якорь электромагнита, 4 – термопечь, 5 – искрогаситель; 6 – батарея электропитания; 7 – сигнальная лампочка

Рис. 2.10. Сосуд Дьюара

Качество сосуда Дьюара определяется отражательной способностью его стенок, теплопроводностью их и слоя остаточного воздуха между стенками. Хорошее покрытие характеризуется коэффициентом отражения 0,95–0,97. Из объема, где находится чувствительная система, откачан воздух. Отсутствие молекул воздуха препятствует передаче тепловой энергии. Остаточное давление воздуха – около $3 \cdot 10^{-5}$ мм рт. ст. Дальнейшее разрежение, начиная с вакуума $1 \cdot 10^{-5}$ мм рт. ст., мало снижает теплопроводность.

В качестве теплоизоляторов в гравиметре выступают также цилиндр из пенопласта и шерстяной чехол, одеваемый на внутренний корпус гравиметра.

Кроме того, верхний кожух гравиметра имеет зеркальную поверхность, которая отражает солнечные лучи (см. рис. 2.2). Внутренняя поверхность футляра транспортировочного ящика покрыта поролоном. Остаточный температурный эффект исключается температурным компенсатором чувствительной системы гравиметра. Изменение температуры внутри гравиметра фиксируют ртутным термометром с ценой деления 0,5 °C.

3. ПОВЕРКИ И ИССЛЕДОВАНИЯ ГРАВИМЕТРОВ

Несмотря на сравнительную простоту устройства кварцевых астазированных гравиметров, получение высококачественных измерений силы тяжести ими возможны только при условии выполнения целого ряда требований, как во время подготовки гравиметра, так и в процессе самих измерений. На точность измерения силы тяжести гравиметром влияют различные факторы и ошибки, которые можно подразделить на случайные и систематические.

К случайным относятся ошибки, связанные с неточностью: нивелировки гравиметра, совмещения индекса маятника с нулем окулярной шкалы, работы отсчетного устройства, определения температуры, настройки уровней на минимум чувствительности к наклону, отсчета температуры, а также с влиянием микросейсмических колебаний.

Систематические факторы обусловлены: ошибками эталонирования гравиметров, недоучетом смещений нуль-пункта, вызываемых изменением механических свойств пружин и нитей кварцевой системы, недоучитываемым действием температуры, а также систематическим влиянием микросейсм.

Величина многих из вышеперечисленных случайных ошибок может быть уменьшена путем выполнения соответствующих исследований, настроек гравиметра и применением соответствующей методики измерений.

Основные поверки, исследования гравиметров типа ГНУ-К и параметры, которым они должны удовлетворять, приведены в табл. 3.1 согласно ГОСТ 13017–83 [9].

	Норма для типа		
Название исследований и поверок гравиметров и их	ГНУ-К Класс		
размерность			
	A (I)	B(II)	C(III)
Верхний предел без перестройки диапазона, мГал	$d \ge 80$		
Верхний предел с перестройкой диапазона, мГал	$D \ge 6\ 000$		
Длительность переходного процесса, мин	$t_{\rm ct} \leq 3$		
Смещение нуль-пункта за сутки, мГал	0,5	2,0	2,0
Чувствительность q , дел./мГал, не менее	7,0	5,0	2,5
Барометрический коэффициент K_b , 10 ⁻⁵ мГал/Па, не более	1,1	1,3	1,6
Барометрический коэффициент, мм (10 ⁻³ мГал/мм рт. ст.), не более	1,5	1,7	2,1
Температурный коэффициент λ_C , мГал/1°С, не более	$\lambda_C \leq 0,5$		

Таблица 3.1. Гравиметры наземные. Общие технические условия

3.1. Настройка гравиметра на минимум чувствительности к наклону по уровням

Настроить гравиметр на минимум чувствительности к наклону – значит привести главную плоскость гравиметра (ГПГ) рис. 3.1 в горизонтальное положение.

Рис. 3.1. Главная плоскость гравиметра:

1 – нить подвеса маятника; 2 – маятник; 3, 4 – уровни продольный и поперечный, соответственно

ГПГ – мнимая плоскость, в которой находятся нить подвеса маятника и сам маятник. Чтобы это условие выполнялось, оси поперечного и продольного уровней гравиметра должны быть параллельны ГПГ.

Теоретической основой способа настройки уровней гравиметра на минимум чувствительности является зависимость изменения показаний гравиметра от величины его наклона (β, радиан).

$$\Delta g_{i} = C \cdot (\Delta S_{i}) = \frac{1}{2} g \beta_{i}^{2}; \Delta S_{i} = S_{0} - S_{i}, \qquad (3.1)$$

где Δg_i – изменение показаний гравиметра, вызванное наклоном прибора, мГал;

 S_0 , S_i – отсчеты по шкале гравиметра, при $\beta = 0$ и при $\beta \neq 0$, соответственно, обор.;

 $g = 0.981 \cdot 10^6$, мГал – приближенное значение силы тяжести в пункте наблюдений;

С – цена оборота измерительного винта гравиметра, мГал/оборот;

β – угол наклона гравиметра относительно горизонтальной плоскости, радиан.

В реальных условиях угол β отсчитывается относительно главной плоскости гравиметра (рис. 3.2, *a*), которая составляет с горизонтальной плоскостью угол ε, обусловленный ошибками юстировки уровней.

Рис. 3.2. Иллюстрация влияния ошибки юстировки уровней гравиметра ^ε

На рис. 3.2, *а*: *1* – отвесная линия; *2* – плоскость горизонта; *3* – ось чувствительности гравиметра.На рис. 3.2, *б* изображено графическое определение ε .В этом случае уравнение (3.1) примет вид:

$$\Delta g_{i} = C \cdot (S'_{0} - S_{i}) = C \cdot (\Delta S_{i} + \Delta S_{0}) = \frac{g(\beta + \varepsilon)^{2}}{2};$$

$$\Delta S_{0} = S'_{0} - S_{0}, \qquad (3.2)$$

где S'_0 – отсчет, соответствующий строго горизонтальному положению гравиметра при $\beta = -\varepsilon$.

Из уравнения (3.2) получим:

$$\Delta g_i = \frac{1}{2} g \cdot \beta^2 + g \cdot \beta \cdot \varepsilon + \frac{1}{2} g \cdot \varepsilon^2.$$

Величины $C \cdot \Delta S_0$ и $\frac{1}{2}g \cdot \varepsilon^2$ равны между собой, не зависят от β и выражают влияние наклона вследствие погрешности юстировки уровней:

$$C \cdot \Delta S_0 = \frac{1}{2} g \cdot \varepsilon^2 = \Delta g_0.$$
(3.3)

Вычитая (3.3) из выражения (3.2), получим:

$$\Delta g - \Delta g_0 = \frac{1}{2} g \cdot \beta^2 + g \cdot \beta \cdot \varepsilon.$$
(3.4)

Уравнение (3.4) графически выражается параболой с осью симметрии, параллельной оси ординат и величиной абсциссы, равной є (см. рис. 3.2, б).

Величину ε можно определить графически или вычислить по формуле:

$$\varepsilon = \frac{2 \cdot (C \cdot \Delta S_0) - g \cdot \beta^2}{2 g \cdot \beta}, \text{ рад.}$$
(3.5)

Полагая, что в формуле (3.1) $\Delta g = 0,01$ мГал; g = 980 Гал; $\beta = \varepsilon$, получим:

$$\varepsilon = \pm \sqrt{\frac{2\Delta g}{g}} = \pm \sqrt{\frac{0,02}{0,98 \cdot 10^6}} = \pm 1,4 \cdot 10^{-4} \text{ рад.}$$

$$\varepsilon'' = \varepsilon \cdot \rho'' = 1,4 \cdot 10^{-4} \cdot 206\,265'' = 30''.$$

Отсюда следует, что допустимая ошибка юстировки уровня равна $\pm 30^{"}$, что соответствует одному делению уровня, цена которого τ равна $30^{"}$.

Погрешность юстировки уровня $\varepsilon = \pm 30^{''}$ соответствует $\pm 0,025$ оборота установочного винта продольного уровня и $\pm 0,010$ оборота поперечного уровня.

Настройку гравиметра на минимум чувствительности к наклону можно выполнить тремя способами.

3.1.1. Первый способ настройки уровней

Гравиметр устанавливают на жесткое основание так, чтобы поперечный уровень 2 (рис. 3.3, *a*), ось 11 которого параллельна оси 3 вращения рычага маятника 4 и линии, соединяющей два подъемных винта 1–1, находился по направлению к оператору (наблюдателю). Продольный уровень 7 расположен по направлению к третьему винту 6. Его ось симметрии 10 параллельна рычагу 4 и изображению индекса маятника9 в поле зрения окуляра 5.

Нивелирование производят следующим образом.

1. Вращением подъемного винта 6 приводят в нуль-пункт пузырек продольного уровня.

2. Затем вращением винтов 1–1 в разные стороны: левого – против хода часовой стрелки, а правого – по ходу, приводят в нуль-пункт пузырек поперечного уровня.

Рис. 3.3. Система нивелирования гравиметра: а) схема расположения уровней на верхней панели гравиметра;б) разметка головки подъёмного винта

На рис. 3.3, *а*: 1,6 – подъемные винты; 2 – поперечный уровень; 3 – нить подвеса маятника; 4 – рычаг маятника; 5 – поле зрения окуляра; 7 – продольный уровень; 8 – окулярная шкала; 9 – индекс маятника; 10 и 11 – оси симметрии уровней: продольного и поперечного, соответственно.

На рис. 3.3, *б*:1 – корпус гравиметра, 2 – «прилив» к корпусу, 3 – головка подъемного винта с делениями, 4 – положения отсчетного индекса.

Если уровни отъюстированы, то при приведении их пузырьков в уль-пункт будет выполнено основное условие гравиметра – ГПГ будет горизонтальной.

Теоретически, горизонтальному положению ГПГ соответствует отсчет по головке подъемного винта $n_0^T = 0$. Практически же отсчет $n_0^T \neq 0$.

Настройку гравиметра на минимум чувствительности к наклону начинают с юстировки продольного уровня в следующей последовательности.

1. Составляют и записывают в подготовленную таблицу (прил. 2) программу выполнения исследований – последовательность наклонов гравиметра относительно вертикали в плоскости колебания маятника в долях оборота установочных винтов.

Головка подъемного винта разделена на 10 делений. Одно деление соответствует углу наклона на 0,1 оборота, или на 2' (минуты дуги).

Обычно для повышения точности определения є гравиметр наклоняют от вертикали в обе стороны на шесть делений (n = 6), с шагом $\Delta n = 2$ деления.

Угол наклона отсчитывают с помощью индекса на корпусе прибора. В качестве такового используется место сопряжения прилива 2 к корпусу гравиметра *1* и головки подъемного винта *3* (обозначено *4* на рис. 3.3, *б*).

Принято считать вращение измерительного винта по ходу часовой стрелки положительным (+), а против – отрицательным (–).

С учетом сказанного, программа исследования продольного уровня (теоретическая) запишется в виде (прил. 2, *табл. П.2.1*, графа 2):

 $n^T \rightarrow 0; +0,6; +0,4; +0,2; 0; -0,2; -0,4; -0,6; 0$

2. При горизонтальном положении ГПГ наводят изображение индекса маятника на нулевой штрих окулярной шкалы и берут отсчет по шкале гравиметра S_1 , который записывают в графу 7. Время взятия отсчета t_1 записывают в графу 5 *табл.П.2.1*, прил. 2.

3. Вращением подъемного винта по часовой стрелке устанавливают на головке подъемного винта отсчет $n^T = +0, 6$ и берут отсчеты по гравиметру и по часам S_2 и t_2 соответственно.

Далее, вращая измерительный винт против часовой стрелки с шагом 2 деления выполняют измерения на установках, записанных в программе (графа 2 в *табл. П.2.1*, прил. 2).

4. Цикл измерений завершается на установке $n_0^T = 0$ и составляет прямой ход.

5. При исследовании поперечного уровня гравиметра наклон осуществляется одновременным вращением двух подъемных винтов в разные стороны с шагом $\Delta n = 0,1$ оборота. При этом пузырек продольного уровня должен оставаться в нуль-пункте.

Программу исследования поперечного уровня (для теоретических установок) можно записать в виде:

$$n^{T} \rightarrow 0; \frac{\stackrel{1}{+}\stackrel{2}{-}\stackrel{3}{-}\stackrel{3}{-}\stackrel{4}{-}\stackrel{5}{-}\stackrel{0}{-}\stackrel{1}{-}\stackrel$$

Здесь числа в числителе соответствуют правому подъемному винту, а в знаменателе – левому. Ошибку, с которой установлены уровни (угол є), можно определить или графически, построив параболу по материалам наблюдений, или аналитически – по формуле (3.5).

6. Перед построением параболы необходимо в результаты измерений ввести поправки за смещение нуль-пункта гравиметра $\delta S_{\rm HII}$: получить исправленный отсчет S^{ucnp} .

Для этого по отсчетам S_i и t_i , взятым по гравиметру при $n_0^T = 0$, строят график зависимости S от t (рис. 3.4).

Рис. 3.4. Иллюстрация графического способа определения поправок за смещение нуль-пункта гравиметра $\delta S_{\rm HII}$

7. Проводят редукционную прямую *R* под условием $\sum \Delta_i^2 = \min$,

где Δ_i – уклонение измеренных значений $(S_0)_i$ от R.

8. Снимают с графика поправки $(\delta S_{\rm HII})_i$ и вводят их в результаты измерений S_i^{U3M} :

 $S_i^{ucnp} = S_i^{u3M} + (\delta S_{H\Pi})_i.$

9. Для продольного уровня параболу строят по S_i^{ucnp} в прямом ходе.

Для поперечного уровня парабола строится по средним значениям (\overline{S}_{i}^{ucnp}), исправленным за смещение нуль-пункта:

$$\overline{S}_{i}^{ucnp} = \frac{\left(S_{i}^{ucnp}\right)^{\Pi} + \left(S_{i}^{ucnp}\right)^{O}}{2},$$

где буквами *П* и *О* обозначены результаты измерений в прямом и обратном ходах.

Если ось симметрии параболы совпадает с осью ординат (S), ГПГ горизонтальна. Если вершина параболы смещена относительно начала координат, находят ось симметрии параболы и определяют по графику величину є (рис. 3.5).

10. Определяют отсчет по головке подъемного винта n^{ucnp} , при котором парабола симметрична:

 $n^{ucnp} = n_0 + \varepsilon$.

11. Исправленный отсчет устанавливают на головке подъемного винта. Если при $n_0 = 0$ пузырек уровня был в нуль-пункте, то при n^{ucnp} он сместится.

12. Исправительными винтами уровня приводят пузырек в нуль-пункт. При этом один исправительный винт вывинчивают, а другой ввинчивают.

13. После юстировки выполняют контрольные измерения. Гравиметр наклоняют от вертикали на одинаковое количество делений n и берут отсчеты S^{+n} и S^{-n} .

14. Если расхождение между отсчетами в допуске

 $\Delta S = S^{+n} - S^{-n} \le 0,020 \text{ of op}.,$

то уровень настроен на минимум чувствительности к наклону.

3.1.2. Второй способ настройки уровней

1. Установить уровни в нулевое положение и совместить маятник с исходным (отсчетным) штрихом окулярной шкалы.

2. Установочными винтами прибора отклонить пузырек одного из уровней вправо или влево на два деления, наблюдая за положением маятника на окулярной шкале. Если при этом заметного смещения маятника не произойдет, или в обоих случаях он отклонится на малую величину в сторону уменьшения силы тяжести (вправо), можно считать, что нарушения регулировки данного уровня нет.

Следует помнить, что при отклонении пузырька одного из уровней пузырек второго уровня должен оставаться в нулевом положении.

Если пузырек второго уровня смещается, то его нужно поправить с помощью установочного винта. В том случае, когда при отклонении пузырька уровня в одну или другую сторону индекс маятника будет перемещаться в разные стороны от нулевого штриха окулярной шкалы, имеет место нарушение регулировки уровня на минимум чувствительности к наклону.

3. Подъемными винтами отвести пузырек неотрегулированного уровня на несколько делений в сторону увеличения силы тяжести (влево). Затем вращением микровинта совместить маятник с исходным положением на окулярной шкале, а пузырек уровня исправительными винтами (при помощи отвертки) привести в нулевое положение. Снова подъемными винтами отклонить пузырек уровня в ту же сторону и опять совместить маятник с исходным положением на окулярной шкале, а уровень привести в нулевое положение. Так нужно делать до тех пор, пока маятник при очередном наклоне прибора не отклонится в сторону уменьшения силы тяжести. Уровень считается отрегулированным, если отклонение его пузырька (наклон прибора) в любую сторону вызовет смещения маятника (блика) в сторону уменьшения силы тяжести от исходного положения или не вызовет никакого смещения.

4. Второй уровень регулируется таким же образом. После регулировки второго уровня необходимо снова проверить правильность установки первого уровня.

3.1.3. Третий способ настройки уровней

Часто настройку уровней проводят по сокращенной программе. Для этого необходимо выполнить следующие процедуры.

1. Наклонить гравиметр на n_1^+ делений подъемного винта и взять отсчет по шкале гравиметра (S_1^+).

2. Наклонить гравиметр в другую сторону на (n_2^-) делений подъемного винта и взять отсчет (S_2^-) , $n_1^+ = n_2^-$.

3. Если (S_1^+) и (S_2^-) отличаются более чем на 20 делений, уровень требует юстировки.

4. Вычислить средний отсчет по гравиметру: $\overline{S} = \frac{\left(S_1^+\right) + \left(S_2^-\right)}{2}$.

5. Установить \overline{S} на отсчетном устройстве гравиметра.

6. Вращением подъемного винта, которым производили наклон гравиметра, вывести индекс маятника на нулевое (0) деление окулярной шкалы.

7. Исправительными винтами уровня вывести пузырек в нуль-пункт.

8. Для контроля повторить эту поверку. При этом разница (S_1^+ и S_2^-) не должна превышать 20 делений отсчетной шкалы.

3.2. Определение масштабного коэффициента гравиметра

Для перевода отсчетов по гравиметру в оборотах (*S*_{обор.}) в мГал необходимо знать цену оборота измерительного винта *C*, мГал/оборот – масштабный коэффициент.

Процесс определения *С* называется эталонированием гравиметра. Эталонирование выполняется обязательно перед началом и после окончания полевых работ. Существует 3 способа эталонирования гравиметров.

1. На пунктах гравиметрического полигона:

$$C = \frac{\Delta g}{\Delta S}, \text{ мГал/обор.}, \qquad (3.6)$$

где $\Delta g = g_2 - g_1; \Delta S = S_2 - S_1;$

*g*₁, *g*₂ и *S*₁, *S*₂ – значения ускорений силы тяжести и отсчеты по гравиметру на пунктах гравиметрического полигона, соответственно.

Чтобы определить масштабный коэффициент всей отсчетной шкалы гравиметра типа ГНУ-К, необходимо иметь разность силы тяжести (Δg) между крайними пунктами полигона согласно ГОСТ 13017-83 [9] не менее 80 мГал. Необходимое приращение Δg можно «набрать» или за счет разности высот

точек H^{γ} : $\Delta g = -\frac{\delta \gamma}{\delta H} H^{\gamma} = -0,3086 H^{\gamma}$, или за счет изменения нормального поля силы тяжести с широтой (5.2 мГад/10 км) расположив пункты полигона

поля силы тяжести с широтой (5,2 мГал/10 км), расположив пункты полигона вдоль меридиана.

Погрешность определения силы тяжести (m_g) на пунктах полигона должна

быть около 0,01 мГал. Относительная погрешность $-\delta = \frac{m_g}{\Delta g}$ должна быть не

более (1,7; 2,6 и 5,0) 10⁻⁴ для гравиметров классов А, В и С, соответственно.

Коэффициент *С* должен быть определен не менее чем в шести независимых рейсах. При вычислении *С* обязательно учитывается поправка за приливное влияние Луны и Солнца (δg_{Π}).

Среднее значение цены оборота измерительного винта гравиметра определяется как средневесовое по формуле:

$$\overline{C} = \frac{\sum_{i=1}^{n} C_i \cdot \Delta g_{i,0}}{\sum_{i=1}^{n} \Delta g_{i,0}},$$
(3.7)

где C_i – коэффициент, вычисленный для каждой разности $\Delta g_{i,0}$ между начальным (0) и *i*-м пунктом полигона.

Относительная погрешность определения среднего значения \overline{C} вычисляется по формуле:

$$\delta_{\overline{C}} = \sqrt{\frac{\sum_{i=1}^{n} (C_i - \overline{C})^2}{C^2 \cdot n(n-1)}},$$
(3.8)

где *п* – число независимых рейсов.

2. Способ навески дополнительной массы

Если взять отсчет по гравиметру – S_1 , а затем поместить на конец рычага маятника дополнительную массу, которая увеличивает момент силы тяжести на известную величину (например, на 200 мГал) и при этом взять отсчет S_2 , то

$$C = \frac{200 \,\mathrm{м}\Gamma\mathrm{a}\mathrm{\pi}}{\left(S_2 - S_1\right)_{\mathrm{обор}}}.$$

Этим способом определяется *C* у гравиметров с металлической упругой системой, типа GS – 11.

3. Способ наклона

В основе этого способа лежит зависимость изменения отсчета по гравиметру от угла наклона, которая описывается уравнением параболы (3.1):

$$\Delta g = \frac{1}{2} g \beta^2.$$

Если S_0 – отсчет по гравиметру при горизонтальном положении ($\beta^\circ = 0$) (рис. 3.6), а S_i при $\beta^\circ \neq 0$ и *C* – цена оборота измерительного винта, то можно записать:

$$g = C \cdot S_0 \text{ при } \beta^{\circ} = 0; \qquad (3.9)$$

$$g \cdot \cos\beta_i = C \cdot S_i \text{ при } \beta^{\circ} \neq 0. \qquad (3.10)$$

Рис. 3.6. Иллюстрация к определению величины С способом наклона

Вычитая формулу (3.10) из выражения (3.9), получим: $g(1 - \cos\beta_i) = C(S_0 - S_i).$ (3.11) Так как

$$(1 - \cos\beta_i) = 2\sin^2\frac{\beta_i}{2},$$
 (3.12)

то с учетом (3.12) выражение (3.11) примет вид:

$$2 g \sin^2 \frac{\beta_i}{2} = C \left(S_0 - S_i \right). \tag{3.13}$$

По малости β_i , разложив левую часть равенства (3.13) в ряд и ограничиваясь первым членом разложения, получим:

$$g\frac{\beta_{i}^{2}}{2} = C \cdot (S_{0} - S_{i}) = C \cdot \Delta S_{i}.$$
(3.14)

Отсюда, имея ввиду, что $\Delta S_i = S_0 - S_i$, находим:

$$C_i = \frac{g\beta_i^2}{2\,\Delta S_i}.\tag{3.15}$$

Наклоны гравиметра задают в делениях подъемного винта. Переход от деления к радианам производится по формуле:

$$\beta_i = \mu \cdot n^T$$
,
где $\mu = a/d$;
 $a = 0,75$ мм – шаг установочного (подъемного) винта;
 $d = 125$ мм – база гравиметра ГНУ-КВ.
С учетом этого выражение (3.15) запишется в виде:

$$C_i = \frac{g}{2} \cdot \mu^2 \left(n_i^T \right)^2.$$

Если обозначить выражение $\frac{1}{2} \cdot g \frac{a^2}{d^2} = K$, то можно записать:

$$C_{i} = \frac{K\left(n_{i}^{T}\right)^{2}}{\Delta S_{i}}.$$
(3.16)

В этом способе наклон гравиметра осуществляется поворотом подъемного винта, т. е. угол наклона β определяется приближенно, а значит, приближенно определяется и цена оборота измерительного винта. Следует также заметить, что определение *С* приближенным способом можно производить лишь после настройки гравиметра на минимум чувствительности к наклону по уровням.

Для определения *точного* значения цены оборота измерительного винта *C* методом наклона существует установка эталонирования гравиметров (полевая) (УЭГП-3), в которой угол наклона гравиметра (β) измеряется с помощью оптической системы теодолита ОТ-02 с погрешностью $m_{\beta} = \pm 0.5''$.

Зависимость показаний гравиметра в мГал является неизвестной нелинейной функцией его отсчета и температуры, которую можно представить в виде:

$$g_i^{S} = C \cdot S_i + f(S_i), \qquad (3.17)$$

где g_i^S – отсчет по шкале гравиметра, мГал;

С – цена оборота измерительного винта гравиметра, мГал/обор.

S_i – отсчет по шкале гравиметра в оборотах измерительного винта, обор.;

 $f(S_i)$ – поправка в отсчет по гравиметру за нелинейность шкалы микрометра, мкГал.

Эталонирование гравиметра ГНУ-К методом наклона на УЭГП состоит из следующих основных этапов:

- 1. Поверка и юстировка УЭГП.
- 2. Установка и регулировка гравиметра на УЭГП.
- 3. Эталонирование гравиметра.
- 4. Обработка измерений.
- 5. Определение зависимости цены оборота микровинта от температуры.

Цена оборота измерительного винта вычисляется по формуле:

$$C = \frac{\sum_{1} \Delta g_{i}}{\sum_{2} \Delta S_{i}}, \text{ мГал/обор.}, \qquad (3.18)$$

где $\Delta g_{i} = g_{i}^{S} - g_{1}^{S};$
 $g_{i}^{S} = \left[\left(\cos \frac{\beta_{i}^{+} - \beta_{i}^{-}}{2} \right) - 1 \right] \cdot 98000;$
 $\Delta S_{i} = S_{i} - S_{1},$
 $f(S_{i}) = (\Delta C \cdot a)_{i} - l_{i}';$
 $a_{i} = \overline{S} - S_{i};$

$$\overline{S} = \frac{\sum S_i}{n};$$

$$l'_i = l_i - C \cdot a_i;$$

$$l = \overline{g} \ ^S - g \ ^S_i;$$

$$\Delta C = \frac{[al]}{[aa]};$$

$$\beta - \text{угол наклона;}$$

n – количество измерений.

Методика эталонирования гравиметров на УЭГП и обработка результатов измерений приведены в методических указаниях [23].

3.3. Определение цены оборота диапазонного винта

Цену оборота диапазонного винта определяют на УЭГП. Гравиметр устанавливают так, чтобы ось поперечного уровня расположилась вдоль оси вращения «стакана» (термостата). Прибор нивелируют. С помощью отвертки поворачивают диапазонный винт на 1–2 оборота так, чтобы индекс маятника сместился влево (в тяжелую сторону). Затем, вращая микровинт УЭГП, наклоняют прибор до тех пор, пока индекс маятника не появится в поле зрения окуляра. Цену оборота диапазонного винта определяют по формуле:

$$C_d = \frac{g\beta^2}{n}$$
, мГал/оборот, (3.19)

где *g* – ускорение силы тяжести в месте эталонирования;

β – угол наклона прибора, в радианах;

n – количество оборотов диапазонного винта.

3.4. Определение коэффициента смещения нуль-пункта гравиметра

Смещение нуль-пункта гравиметра $\delta g_{\rm HII}$ – это изменение показания гравиметра Δg , мГал на одном и том же пункте за интервал времени ΔT , час:

$$\delta g_{Hn} = \frac{\Delta g}{\Delta T} K_T = \frac{(C \cdot \Delta S)}{\Delta T} \cdot \Delta t_i, \qquad (3.20)$$

где *K*_{*T*} – коэффициент смещения нуль-пункта;

 $\Delta S = S_i^H - S_i^K -$ разность отсчетов по гравиметру на одноименных точках за интервал времени $\Delta T = T_K - T_H$ в начале (*H*) и в конце (*K*) исследования;

 $\Delta t = T_i - T_1$ – приращение времени относительно времени измерений на первом пункте;

С – цена оборота измерительного винта.

Коэффициент *K_T* можно определить двумя способами: аналитическим или графическим.

3.4.1. Аналитический способ

Используя повторные наблюдения на одноименных пунктах, составляют уравнения поправок вида:

 $\Delta S_1 - K_T \cdot \Delta T_1 = v_1;$ $\Delta S_2 - K_T \cdot \Delta T_2 = v_2;$ $\Delta S_i - K_T \cdot \Delta T_i = v_i:$ (3.21)

где v_i – остаточная погрешность, обусловленная ошибками взятия отсчета, или нивелирования, или влияния микросейсм.

Решают систему уравнений по способу наименьших квадратов под условием [vv] = min:

$$f(K_T) = \sum (\Delta S_i - K_T \cdot \Delta T_i)^2 = \sum \Delta S_i^2 - 2K_T \sum \Delta S_i \Delta T_i + K_T^2 \sum \Delta T_i^2 \quad .$$

(3.22)

Взяв производную от $f(K_T)$ по K_T и учитывая, что

$$\frac{df(K_T)}{d(K_T)} = 0,$$

получают
 $f'(K_T) = -2\sum\Delta S_i \Delta T_i + 2K_T \sum\Delta T_i^2 = 0.$ (3.23)
Откуда
 $K_T = \frac{\sum(\Delta S_i \Delta T_i)}{\sum(\Delta T_i^2)}.$ (3.24)

Согласно ГОСТ 13017–83 смещение нуль-пункта гравиметров класса В и С не должно превышать 2 мГал за сутки [9].

3.4.2. Графический способ

Этот способ позволяет быстро, без вычислений определять поправку за смещение нуль-пункта гравиметра $\delta g_{\rm HII}$.

Сущность этого метода в следующем.

1. Отсчеты гравиметра в оборотах переводят в мГал.

2. По результатам измерений на контрольных пунктах строят графики смещения нуль-пункта для одноименных точек, на которых выполнено повторное измерение (рис. 3.7).

Рис. 3.7. Графический способ определения поправкиза смещения нуль-пункта гравиметра

3. Проводят линию перпендикулярно оси времени t так, чтобы она пересекала все отрезки смещения нуль-пункта на контрольных точках.

4. Параллельным переносом смещают все отрезки в одну точку (А).

5. Проводят редукционную прямую R под условием [vv] = min, где v - уклонение концов отрезков от R.

6. Поправки за смещение нуль-пункта $(\delta g_{H\Pi})_i$ – расстояние от R до оси времени, мГал.

3.5. Определение чувствительности и порога чувствительности гравиметра

Чувствительностью гравиметра называется отношение перемещения индекса маятника упругой системы по окулярной шкале к изменению силы тяжести.

Чем выше чувствительность, тем точнее может быть совмещен индекс с нулевым штрихом окулярной шкалы. Увеличение чувствительности ведет к увеличению периода *T* собственных колебаний маятника, что удлиняет время наблюдения на пункте. Чувствительность увеличивается при смещении нуля окулярной шкалы в сторону увеличения силы тяжести и уменьшается – в сторону уменьшения силы тяжести. Чувствительность определяют после настройки гравиметра на минимум чувствительности к наклону по уровням.

Гравиметр устанавливают на жесткое основание, дают выдержку в несколько часов, пока не стабилизируется изменение нуль-пункта.

Далее снимают отсчеты по гравиметру, последовательно наводя индекс маятника на следующие деления: «О» окулярной шкалы $-S_0$, затем на 10 штрих слева от «О» $-S_{-10}$, потом на 10 штрих справа от «О» $-S_{+10}$, и снова по

нулевому штриху окулярной шкалы – S'_0 . На каждом штрихе «берут» по три отсчета и записывают время их взятия.

Программа наблюдений при выполнении данного исследования записывается следующим образом.

- 1. Отсчеты(обор.): S_0 , S_{-10} , S_{+10} , S_0 , S_{-10} , S_{+10} , S_0 , S_{-10} , S_{+10} , S_0 .
- 2. Время (h, m): *t*₁, *t*₂, *t*₃, *t*₄, *t*₅, *t*₆, *t*₇, *t*₈, *t*₉, *t*₁₀.

По средним отсчетам на нулевых штрихах вычисляют поправку $\delta g_{\rm HII}$, а по крайним – чувствительность:

$$\left(\delta g_{\text{HII}} \right)_{i} = K \cdot \Delta t_{i},$$
 (3.25)

$$\text{где } K = \frac{\sum_{i=1}^{n} (\Delta S_{i} \cdot \Delta T_{i})}{\sum_{i=1}^{n} (\Delta T_{i})^{2}};$$

$$\Delta S_{i} = (S_{0})_{i} - (S_{0})_{i+1};$$

$$\Delta T_{i} = (t_{0})_{i+1} - (t_{0})_{i}; \Delta t_{i} = t_{i} - t_{1}.$$

Вычислив поправки за смещение нуль-пункта гравиметра, получают исправленные отсчеты по гравиметру:

$$S_{i}^{ucnp.} = S_{i}^{u3M.} + (\delta g_{Hn})_{i}.$$
(3.26)

Далее вычисляют средние отсчеты на штрихах (+10) и (-10):

$$\overline{S}^{ucnp.} = \frac{\sum S_i^{ucnp.}}{3}.$$
(3.27)

И, наконец, вычисляют чувствительность гравиметра:

$$q = \frac{\Delta \cdot n}{C\left(\overline{S}_{+10}^{ucnp} - \overline{S}_{-10}^{ucnp}\right)} \ge 2,5 \,\mathrm{MM/M\Gammaaj},$$

где *Δ* – расстояние (видимое) между штрихами окулярной шкалы,

 $\Delta = 0,1 \text{ мм} \times 20^{x} = 2 \text{ мм}$, (0,1 – истинное расстояние между штрихами окулярной шкалы; 20^{x} – увеличение окуляра);

n – количество отсчетов на каждом штрихе.

Чувствительность гравиметра может изменяться от пункта к пункту. Допуск – 15 % при разности $\Delta g \leq 500$ мГал.

Под *порогом чувствительности* (σ) понимают среднюю квадратическую погрешность (СКП) взятия отсчета по гравиметру. Ее вычисляют как СКП двух соседних отсчетов:

$$\sigma_i = S_2 - \frac{S_1 + S_3}{2}, \qquad (3.29)$$

где S_1, S_2, S_3 – последовательные отсчеты по гравиметру;

σ_i – СКП взятия отсчета.

Порог чувствительности вычисляют по формуле:

$$\sigma = C \sqrt{\frac{\sum_{i=1}^{n} \sigma_i^2}{n}}.$$
(3.30)

3.6. Определение времени переходного процесса или становления отсчета

Под действием переменных нагрузок во время транспортировки чувствительная система гравиметра сильно возбуждается. В результате колебаний изображение маятника на окулярной шкале становится нечетким (размытым), что мешает точному наведению индекса маятника на нуль окулярной шкалы. Поэтому, перед снятием отсчета по гравиметру требуется время для успокоения системы – «время становления отсчета». Оно определяется следующим образом.

Гравиметр устанавливают на вибростенд и подвергают вибрации с частотой 20 Гц и амплитудой около 0,2 мм в течение 10 минут. Затем, в течение 20 минут берут отсчеты по гравиметру через 1 минуту. Отсчеты переводят в мГал и вычисляют Δg :

 $\Delta g_i = C \cdot \Delta S_i$, (мГал), (3.31)

где $\Delta S_i = S_i - S_0$ (обор.).

По результатам вычислений строят график зависимости Δg от *t* (рис. 3.8).

Рис. 3.8. Иллюстрация определения времени становления отсчета

Погрешность единичного измерения силы тяжести є берется из ГОСТ 13017–83 [9].

Проводят асимптоту к кривой Δg . Далее на расстоянии ε от асимптоты проводят прямую 1, параллельную оси абсцисс t^m . Через точку пересечения

линии 1 с кривой Δg проводят перпендикуляр к оси абсцисс, который отсечет время становления отсчета t_{cm} . Допустимая величина $t_{cm} \leq 3$ min. Чем меньше t_{cm} , тем лучше гравиметр.

3.7. Определение верхнего предела измерений силы тяжести без перестройки диапазона гравиметра

Возможно несоответствие фактического диапазона измерения силы тяжести гравиметром и данного в паспорте прибора. Поэтому необходимо точно знать его величину и рабочие обороты микровинта, чтобы надежно планировать объемы работ на день.

1. Микровинтом устанавливаем на счетчике оборотов отсчет 0,000 оборотов.

2. Индекс маятника «уйдет» влево (в сторону увеличения силы тяжести).

3. Вращением диапазонного винта против часовой стрелки (в сторону, где находится маятник) выводим изображение индекса на середину окулярной шкалы, не доводя до нулевого штриха на 1–2 деления слева.

4. Вращением измерительного винта наводим изображение индекса точно на нуль окулярной шкалы и берем отсчет по шкале гравиметра (S_{\min}).

5. Микровинтом устанавливаем на счетчике оборотов максимальный отсчет – 15 обор.

6. Маятник «уйдет» вправо (в сторону уменьшения силы тяжести).

7. Вращением диапазонного винта по часовой стрелке, выводим изображение маятника на середину окулярной шкалы, не доводя на 1–2 деления до нуля окулярной шкалы справа и берем отсчет по гравиметру.

8. Наводим микровинтом индекс маятника точно на нуль окулярной шкалы и снимаем отсчет (S_{\max}):

 $\Delta g = |(S_{\max} - S_{\min}) \cdot C| \ge 100 \text{ мГал.}$ (3.32)

При выполнении полевых работ не рекомендуется «работать» на крайних оборотах измерительного винта.

3.8. Исключение влияния люфта («мертвого хода») измерительного винта

В процессе работы резьба микровинта истирается и появляется люфт, наличие которого приводит к ошибке в отсчете. Люфт может приводить к ошибке в отсчете до нескольких десятых долей оборота микровинта. Для исключения влияния «мертвого хода» необходимо всегда наводить изображение маятника на нуль окулярной шкалы вращением микровинта по часовой стрелке. Смещать индекс маятника вращением микровинта против часовой стрелки.

3.9. Определение температурного коэффициента гравиметра

Температурный коэффициент гравиметра (α_C) получают одновременно с определением цены оборота измерительного винта (*C*). *C* – определяют на УЭГП в термокамере при 3-х температурах с шагом $\Delta T = 10^{\circ}$. Например, для летних работ *T* = 10, 20, 30 °C. Причем, при каждой температу-ре « \overline{C} » определяют не менее чем из трех приемов. Строят график зависимости *C*, полученной как среднее из трех приемов, от *T*, °C (рис. 3.9).

Рис. 3.9. График изменения цены оборота измерительного винта от температуры

Проводят редукционную прямую R через точки \overline{C}_i при условии [vv] = min. R продолжают до пересечения с осью C и получают значение C_0 при T = 0 °C. Коэффициент α_C есть ничто иное, как $\alpha_C = \tan \frac{\Delta C}{\Delta T}$ – температурный коэффициент цены оборота микровинта гравиметра, в мГал/(оборот · градус).

При обработке гравиметрического рейса цену оборота измерительного винта необходимо вычислять для каждой температуры *T_i* гравиметра по формуле:

 $C_{t} = C_{0} + \alpha_{C} \cdot \Delta T_{i},$ (3.33) где $\Delta T_{i} = (T_{i} - T_{0}) \circ C.$ По ГОСТ 13017–83 величина $\alpha_{C} \leq 0,5$ мГал/1 °С [9].

3.10. Определение барометрического коэффициента гравиметра

Измерения с гравиметром проводят в барокамере (рис. 3.10). При этом соблюдается следующая последовательность действий.

Рис. 3.10. Схема устройства барокамеры для исследования гравиметров

1. Гравиметр (2) устанавливают на дно 6 барокамеры 1 и нивелируют его.

2. Совмещают подвижный индекс маятника с нулем окулярной шкалы и берут отсчеты по гравиметру S_1 в оборотах микровинта и давление воздуха по барометру P_1 мм рт. ст.

3. Закрывают барокамеру толстым прозрачным оргстеклом 4, укладывая последнее на кольцо из вакуумной резины 3.

4. С помощью вакуумного насоса откачивают воздух из барокамеры через вакуумный кран с манометром 7, понижая давление на 300–400 мм рт. ст.

5. Глядя через оргстекло в окуляр гравиметра 8, отмечают смещение индекса маятника в делениях окулярной шкалы и давление P_2 внутри барокамеры.

6. Открывают барокамеру, наводят микровинтом изображение индекса маятника на тот штрих окулярной шкалы, который был отмечен при закрытой барокамере и берут отсчет по гравиметру *S*₂.

7. Барометрический коэффициент вычисляют по формуле:

 $K_{B} = \frac{C(S_{1} - S_{2})}{P_{1} - P_{2}} \frac{M\Gamma a \pi}{MM \text{ рт.ст.}}.$ (3.34) По ГОСТ 13017–83 величина $K_{B} \leq 1,6 \text{ м}\Gamma a \pi/MM \text{ рт. ст. [9]}.$

4. МЕТОДИКА ГРАВИМЕТРОВЫХ РАБОТ

Процесс получения гравиметрических данных требует выполнения определенного объема работ, который включает их проектирование и организацию, выполнение инструментальных измерений на местности, обработку результатов измерения, оценку их качества и написание технического отчета.

В данной работе акцент сделан на методике выполнения полевых работ и обработке результатов измерений.

4.1. Методы измерения силы тяжести

Способы измерения силы тяжести основаны на физических процессах, связанных с проявлением закона всемирного тяготения: это падение тел, колебание маятника, прецессия тяжелого гироскопа, колебание струны, натянутой грузом, искривление поверхности вращающейся жидкости (тот же гироскоп), деформация тел под действием постоянной массы, парение проводника с током в поле постоянного магнита, подъем жидкости в капилляре и др. Однако, при современном уровне развития измерительной техники приемлемую точность определения силы тяжести можно получить из наблюдения лишь небольшого числа явлений.

Все существующие методы измерения силы тяжести подразделяются на динамические и статические (рис. 4.1).

Динамическими называются методы, в которых наблюдается движение тела под действием силы тяжести (g), а измеряемой величиной является время (t), необходимое телу для перехода из одного фиксированного положения (H_0) в другое (H_i). К динамическим методам относятся следующие.

1. Баллистический, в котором используется закон прямолинейного равноускоренного движения свободно падающего тела:

$$H = H_0 + v_0 t + \frac{gt^2}{2} . \qquad (4.1)$$

2. Маятниковый, который основан на зависимости периода свободных колебаний маятника (*T*) от величины силы тяжести:

$$T = 2\pi \sqrt{\frac{l}{g}}, \qquad (4.2)$$

где *l* – длина маятника.

3. Электромеханический, который основан на зависимости частоты колебаний струны, натянутой грузом, под действием силы тяжести:

$$f = \frac{l}{2} \sqrt{\frac{m \cdot g}{\rho}}, \qquad (4.3)$$

где *f* – частота колебаний струны, Гц;

l – длина струны, см;

m – масса груза, г;

ρ – линейная плотность струны, г/см.

Статическими методами называются такие, в которых наблюдается изменение положения равновесия тела под действием силы тяжести и некоторой силы, уравновешивающей ее. А непосредственно измеряемой величиной является угловое или линейное смещение тела с постоянной массой:

 $Mg + F = 0, \qquad (4.4)$

где *Mg* – момент массы;

F – уравновешивающая сила.

В качестве силы *F* используется упругая сила деформации нитей и пружин, а также сила, действующая на проводник с током в магнитном поле.

Кроме того, методы подразделяются на абсолютные и относительные. При абсолютных определениях измеряют полное значение величины силы тяжести (*g*) в данной точке.

Поскольку размерность *g* определяется в единицах [длина · время⁻²], то требуется измерение этих величин. При этом погрешность измерения ускорения силы тяжести не должна превышать $m_{\rm g} = \pm 1 \cdot 10^{-8} \text{ м/c}^2$. Для достижения такой точности путь и время необходимо измерять с погрешностью порядка $\pm 1 \cdot 10^{-9}$.

При относительных определениях измеряют приращение силы тяжести (Δg) относительно пункта с известным значением $g_{\text{исх}}$:

 $g_{onp.} = g_{ucx.} + \Delta g.$

Статический метод определения силы тяжести реализован в приборах, которые называются статическими гравиметрами.

Рис. 4.1. Классификация способов определения силы тяжести

4.2. Виды гравиметрических съемок

Совокупность геодезических и гравиметрических измерений на местности с целью построения гравиметрической карты, называется *гравиметрической съемкой*.

В зависимости от точности, гравиметрические съемки подразделяются на следующие.

1. *Региональные* – в масштабах от 1 : 1 000 000 до 1 : 500 000. Их целью является тектоническое районирование значительных по площади геологических структур, прогноз областей, перспективных на обнаружение месторождений полезных ископаемых. Результаты мелкомасштабных съемок являются основой для изучения фигуры и внутреннего строения Земли, а также, – районирования земной коры по типам и определения ее толщины.

2. Среднемасштабные, или поисково-разведочные съемки. Они проводятся в масштабах от 1 : 200 000 до 1 : 50 000 для поиска месторождений полезных ископаемых на перспективных площадях, а также для уточнения геологического строения территорий исследований.

3. *Детальные съемки в масштабах от 1 : 25 000 и крупнее* применяются для оконтуривания месторождений, определения их параметров – для последующего подсчета запасов полезного ископаемого.

В зависимости от физико-географических условий и применяемых средств транспортировки гравиметрической аппаратуры различают съемки: наземную, подземную, скважинную, морскую (донную, подводную, надводную), аэрогравиметрическую и спутниковую.

По структуре сети съемки подразделяются на следующие.

1. Площадные, когда расстояние между точками на профиле (Δx) и между профилями (Δy) находится в соответствии $\Delta y \leq 5\Delta x$. Если $\Delta y = \Delta x$, съемка называется равномерной. По результатам этой съемки можно построить карты аномалий силы тяжести.

2. Профильные, когда $\Delta y > 5\Delta x$. Эти съемки позволяют получить изменения аномалий силы тяжести вдоль линий. Съемки применяются для изучения глубинного строения земной коры (зон контактов крупных тектонических блоков разломов) И для определения И методики гравиметрической съемки в неизученных районах.

3. *Маршрутные*, выполняемые в труднодоступных районах по долинам рек или дорогам.

4. *Рекогносцировочные*, для определения характера изменения силы тяжести на участке работ.

Точка на местности, в которой выполнены измерения элементов гравитационного поля Земли называется *гравиметрическим пунктом*. На участке съемки гравиметрические пункты подразделяются на *исходные*, в которых известно абсолютное значение ускорения силы тяжести (обычно – это пункты Государственной гравиметрической сети), а также *опорные* в гравиметрических съемках.

4.3. Геодезическое обеспечение гравиметрических съемок

Геодезические данные необходимы при обработке результатов измерений с гравиметрами и построения геодезической основы для гравиметрической карты.

- Геодезические работы включают в себя три основных вида работ.
- 1. Вынос в натуру запроектированного участка съемки.
- 2. Определение (разбивка) положения съемочных профилей и точек (пунктов) на них.

При этом необходимо строго соблюдать условия: профили должны быть прямолинейными, а расстояния между съемочными точками – равными. Выполнение этих условий снижает объем вычислительных работ при определении координат съемочных точек. Закрепленные точки профиля и концы профилей должны хорошо опознаваться, а их нумерация – читаться.

3. Определение координат и высот съемочных точек. Требования к точности определения планово-высотного положения пунктов зависят от точности вычисляемых аномалий силы тяжести или, другими словами, от масштаба отчетной карты (см. прил. 13).

Расчет точности определения координат и высот съемочных точек рассмотрим на примере вычисления аномалий силы тяжести в редукции Буге. Продифференцировав выражение (1.23) по переменным *В* и *Н* перейдем к средним квадратическим погрешностям. Получим:

$$m_{\Delta g} = \left(\frac{\delta \gamma_0}{\delta B}\right)^2 \cdot m_B^2 + \left(0, 3086 - 2\pi\overline{\rho}f\right)^2 \cdot m_H^2, \qquad (4.5)$$

где $\frac{\delta \gamma_0}{\delta B}$ – горизонтальный градиент нормальной силы тяжести, мГал/м;

f – гравитационная постоянная, 6.67·10⁻¹¹ м³/кг·c²;

 $\overline{\rho}$ – средняя плотность пород земной коры, г/см³;

 m_B^2 и m_H^2 – погрешности определения координат и высот съемочных точек, соответственно;

При $\overline{\rho} = 2,67$ г/см³, R = 6,371км и $\Delta g = 5\,200$ мГал выражение примет вид:

$$m_{\Delta g_B} = (0,00052)^2 \cdot m_B^2 + (0,2)^2 \cdot m_H^2 .$$
(4.6)

Если, например, необходимо получить Δg_{E} с погрешностью порядка±0,1 мГал, то плановое положение гравиметрического пункта необходимо определять не грубее 40 м, а по высоте – около ±0,3 м [16].

Геодезические работы при гравиметрических съемках по стоимости в несколько раз дороже последних. Поэтому при определении координат и высот пунктов стараются применить самые простые геодезические методы, обеспечивающие требуемую точность конечных результатов: топографические карты, различные геодезические засечки, теодолитные ходы, нивелирование – техническое или барометрическое.

4.4. Выполнение гравиметрических измерений

Предварительно еще раз напомним, что гравиметрические системы, в отличие от геодезических, работают в динамическом режиме: чувствительный элемент (маятник) гравиметра, удерживаемый упругими силами пружин и нитей подвеса под действием силы тяжести и других факторов, рассмотренных в разд. 3, постоянно опускается, что приводит к изменению отчета со временем. Это явление называется смещением нуль-пункта гравиметра (см. подразд. 3.4). Его приходится учитывать, что может существенно повысить стоимость гравиметровых измерений.

4.4.1. Опорная гравиметрическая сеть

Полевые наблюдения с гравиметрами начинаются с создания сети опорных пунктов, которые служат для учета смещения нуль-пункта гравиметра, а также для «привязки» всей сети наблюдений к единому уровню, который обеспечивается Государственной гравиметрической сетью.

Точность определения силы тяжести на пунктах полевой опорной гравиметрической сети в 1,5–2,0 раза выше, чем на рядовых. Это достигается выполнением измерений в коротких рейсах, строгим соблюдением методики наблюдений и транспортировки приборов.

Если при наблюдениях на опорной сети используется тот же гравиметр, что и на рядовой, то на каждом опорном пункте необходимо выполнить измерения в трех независимых рейсах. При применении более точных приборов допускаются двукратные независимые наблюдения [16].

Полевая опорная сеть может создаваться в начале полевых работ или в процессе проведения гравиметрической съемки.

В практике гравиметрических работ различают центральную, двухступенчатую и полигональную системы.

1. В *центральной системе* (рис. 4.1) каждый опорный пункт имеет непосредственную связь с центральным, в качестве которого может быть использован пункт Государственной гравиметрической сети [16].

Рис. 4.1. Иллюстрация развития опорной сети по центральной системе

Оценка качества опорной сети определяется по формуле:

$$\varepsilon_{\rm off} = \pm \sqrt{\frac{\varepsilon}{\overline{N}}},$$
(4.7)

где є – средняя квадратическая погрешность единичного измерения;

$$\varepsilon_{\text{OII}} = \pm \sqrt{\frac{\sum \delta^2}{N \cdot n}}; \, \overline{N} = \frac{N}{n},$$
(4.8)

N – общее число измерений приращений силы тяжести в опорной сети; n – число пунктов;

 δ_i – отклонение измеренного значения Δg_i от среднего;

$$\delta_{i} = \Delta g_{i} - \Delta \overline{g}; \qquad (4.9)$$
$$\Delta \overline{g} = \frac{\sum \Delta g_{i}}{k}; \qquad (4.10)$$

k – количество приращений Δg , принятых в обработку.

2. Двухступенчатая опорная система (рис. 4.2) состоит из каркасной (к) и заполняющей сети (з). Каркасная опорная сеть создается по центральной системе. Рейсы заполняющей опорной сети опираются на пункты каркасной сети (к).

Рис. 4.2. Иллюстрация развития опорной сети по каркасной системе

Так, например, выполнив рейс 1-2-3-4-1, получим приращения Δg по звеньям 1-2, 1-4, 1-3. Из рейса 1-2-3-4-2-1 определим Δg между пунктами 2-1, 2-3 и 2-4 и, наконец, выполнив рейс 1-4-3-4-1, вычислим приращения по звеньям 4-1 и 4-3.

Оценка точности сети этого вида производится по формуле:

$$\varepsilon_{on} = \pm \sqrt{\varepsilon_{\kappa}^2 + \frac{n_3}{n_{\kappa} + n_3}} \cdot \varepsilon_{3}^2 , \qquad (4.11)$$

где n_{κ} , n_3 и ε_{κ} , ε_{3} – число каркасных и заполняющих, а также средние квадратические погрешности силы тяжести на этих пунктах, вычисленные по формуле (4.1).

3. В полигональной системе опорная сеть образуется из совокупности полигонов, в которых каждое звено определено из независимых рейсов по схеме А-Б-А.

Погрешность определения силы тяжести (Δg) вычисляется по формуле:

$$\varepsilon_{\rm OII} = \pm \mu \sqrt{\frac{M}{m}}, \qquad (4.12)$$

где *М* – средняя удаленность опорных полевых пунктов от ближайших исходных гравиметрических пунктов;

m – среднее число определений Δg между двумя смежными пунктами;

$$\mu = \sqrt{\frac{\sum \delta^2}{N - S}},\tag{4.13}$$

S – число сторон, образующих все полигоны опорной сети.

Для достижения высокой точности определения Δg между пунктами опорной сети используют не менее трех гравиметров и выполняют не менее шести приборосвязей по схеме А-В-А. Оценку точности определения приращения силы тяжести производят по специальной методике, изложенной в лабораторной работе № 4 данного издания, а также в изданиях [17,28].

4. В практике гравиметрических работ возможно развитие опорной гравиметрической сети в процессе выполнения измерений на пунктах рядовой сети. Этот способ (рис. 4.3) называется *«методикой разностного нуль-пункта»* и заключается в следующем [8,11].

Рис. 4.3. Иллюстрация развития опорной сети методом разностного нуль-пункта

Для работы подбираются гравиметры с разными градиентами нуль-пункта. Наблюдения выполняют сразу двумя, тремя гравиметрами. Измерения по времени ограничиваются продолжительностью рабочего дня. Они начинаются и заканчиваются или на концах профилей, или в точке пересечения профилей и магистралей, которые обычно становятся опорными пунктами. На них же делают и перерывы в работе.

По результатам измерений *g_i* каждым гравиметром (I, II, III) для каждой *i*й точки вычисляются разности измеряемых значений:

$$\Delta g_i = (g_I)_i - (g_{II})_i. \tag{4.14}$$

Разности Δg_i выносят на миллиметровку – получается график изменения этих разниц. На графиках намечаются пункты, между которыми сумма квадратов отклонений d_i от осредняющей прямой не превышала бы величины, предписанной техническим заданием:
$$\varepsilon_d = \pm \sqrt{\frac{\sum\limits_{i=1}^n d_i^2}{2n}}, \qquad (4.15)$$

где *n* – число разностей в выделенном интервале (звене).

Суть методики в том, что точки излома разностного нуль-пункта совпадают с точками излома кривых изменения нуль-пункта одного из приборов. Они-то и являются теми точками, на которых выставляются дополнительные опорные пункты. Этим обеспечивается то, что принятие линейного закона изменения нульпункта не несет значительной погрешности и, таким образом, итоговая погрешность может быть значительно снижена.

Опыт работы показывает, что при такой методике развития опорной сети получается меньшее количество опорных пунктов, чем при предварительной разбивке опорных пунктов для рейса продолжительностью 2-3 часа, а точность определения Δg рядовых пунктах возрастает.

4.4.2. Рядовая сеть

Гравиметрические измерения выполняются отдельными *рейсами*. Рейс – это непрерывная последовательность измерений с гравиметром, объединенная общим смещением нуль-пункта, которая начинается и заканчивается на опорном пункте.

Часть рейса между двумя соседними по времени опорными пунктами называется *звеном*. Основным типом рейса является однодневный. Наблюдения в рейсах проводятся, как правило, по однократной методике. При наблюдениях используются, обычно, два гравиметра.

При проведении съемок в труднодоступных районах наблюдения выполняют тремя гравиметрами одновременно. Это исключает необходимость повторения рейса в случае обнаружения брака в измерениях одним из гравиметров.

Если гравиметры показывают стабильность в смещении нуль-пункта, обеспечивающую точность результатов наблюдения, то допускается увеличение продолжительности рейса.

При работе с гравиметром должны выполняться следующие правила.

1. За 12 часов до начала рейса необходимо установить рабочий диапазон измерения силы тяжести. Для этого используются результаты рекогносцировочной съемки или гравиметрические карты в более мелких масштабов.

2. Перед началом рейса необходимо настроить уровни гравиметра на минимум чувствительности к наклону.

3. За два часа до начала рейса следует удерживать маятник упругой системы в исходном положении: индекс маятника должен находиться на нулевом делении окулярной шкалы.

4. В начале рейса, для введения чувствительной системы гравиметра в рабочий режим, необходимо, выполнив измерения на первых трех, четырех точках профиля, возвратиться на первую точку, затем продолжить измерения в рейсе.

5. Во время рейса нельзя менять способ транспортировки гравиметра. Скорость движения от точки к точке должна быть одинаковой.

6. Гравиметры на точке устанавливают на специально изготовленную жесткую подставку.

7. На пунктах берут три независимых отсчета по шкале гравиметра при наведении каждый раз изображения маятника на нуль окулярной шкалы вращением измерительного винта по часовой стрелке. Этим исключается так называемый «мертвый ход» винта. Отсчеты по гравиметру следует брать через одинаковые промежутки времени. Расхождение между отсчетами не должно превышать 5 делений микрометра. Если цена оборота измерительного винта 8 мГал/оборот, то погрешность наведения составит 0,004 мГал. В противном случае берутся дополнительные отсчеты по гравиметру.

8. После взятия отсчетов в пунктах наблюдения записываются показания часов с точностью до 1 минуты и температура прибора с точностью до 0,5 °C. Кроме того, на каждой точке в журнале записывается название или номер рейса, профиля и пикета, дата проведения измерений, условия наблюдения (погода, сейсмичность и т. п.).

В зависимости от густоты точек опорной сети гравиметрический рейс можно выполнить по следующим методикам.

1. «Прямой ход», когда измерения на рядовых пунктах начинаются на одном, а заканчиваются на другом опорном пункте (рис. 4.4).

Рис. 4.4. Иллюстрация гравиметрического рейса по методике «прямой ход»

При этом коэффициент смещения нуль-пункта гравиметра вычисляется по формуле:

$$K = \frac{\left(g_{01}^{S} - g_{02}^{S}\right) - \left(g_{01} - g_{02}\right)}{t_{2} - t_{1}},$$
(4.16)

где g_{01}^S и g_{02}^S – измеренные значения силы тяжести на опорных гравиметрических пунктах ОГП-1 и ОГП-2;

*g*₀₁ и *g*₀₂ – значения силы тяжести на пунктах ОГП-1 и ОГП-2, полученные из уравнивания опорной сети;

 t_1 и t_2 – время снятия отчетов по шкале гравиметра на опорных пунктах ОГП-1 и ОГП-2.

2. «Замкнутый ход», если рейс начинается и заканчивается на одном и том же опорном пункте (рис. 4.5).

Рис. 4.5. Иллюстрация гравиметрического рейса по методике «замкнутый ход»

В таком рейсе коэффициент смещения нуль-пункта гравиметра определяется по формуле:

$$K = \frac{\left(g_1^S\right)_H - \left(g_1^S\right)_K}{t_K - t_H}, \qquad (4.17)$$

$$\Gamma_{TRE} = \left(g_1^S\right)_H - \left(g_1^S\right)_K - \mu_S = \mu_S =$$

где $(g_1^{S})_H$ и $(g_1^{S})_K$ – измеренное значение силы тяжести на опорном пункте ОГП-1 в начале и в конце рейса, соответственно.

3. «Прямой и обратный ход» выполняют, соответственно в прямом и обратном направлении (рис. 4.6). В прямом ходе измерения выполняют последовательно на всех пунктах, а в обратном – только на некоторых.

Рис. 4.6. Иллюстрация гравиметрического рейса по методике «прямой и обратный ход»

При этом число пунктов, на которых выполняются повторные измерения, должно быть не менее 20 %. Коэффициент смещения нуль-пункта гравиметра вычисляется по формуле:

$$K = \frac{\sum_{i=1}^{m} \left(\Delta g_i^S \cdot \Delta T_i \right)}{\sum_{i=1}^{m} \Delta T_i^2}, \qquad (4.18)$$

где Δg_i^S и ΔT_i – разность измеренных значений силы тяжести и времени на одноименных пунктах в прямом (Π) и обратном (O) ходе;

$$\Delta g_{i}^{S} = \left(g_{i}^{S}\right)_{\Pi} - \left(g_{i}^{S}\right)_{O};$$

$$\Delta T_{i} = \left(t_{i}\right)_{O} - \left(t_{i}\right)_{\Pi}.$$
 (4.19)

4.5. Обработка результатов гравиметровых измерений и оценка их точности

Обработка результатов гравиметровых наблюдений разделяется на два этапа: предварительный (полевой) и окончательный (камеральный).

В конце рабочего дня проводят обработку результатов измерений с гравиметрами в рейсе в следущей последовательности.

1. Время взятия отсчета в минутах переводят в доли часа.

2. Вычисляют средний отсчет на точке в оборотах измерительного винта Si, обор.

3. Вычисляют цену оборота измерительного винта, соответствующую температуре прибора в момент измерений C_{T_i} .

4. Вычисляют отсчет по гравиметру в миллигалах – эффективное значение силы тяжести g_i .

5. По результатам измерений строят графики смещения нуль-пункта гравиметров.

6. Производится вычисление приращений силы тяжести по каждому гравиметру на рядовых точках относительно опорных пунктов.

7. Оценивается погрешность определения приращения силы тяжести по каждому звену.

Качество выполненных гравиметровых измерений оценивается величиной средней квадратической погрешности определения значений силы тяжести на пункте:

$$\varepsilon_g = \sqrt{\varepsilon_u^2 + \varepsilon_{on}^2 + \varepsilon_{ps\partial}^2}, \qquad (4.20)$$

где ε_u – погрешность привязки полевой опорной сети к Государственной гравиметрической,

ε_{оп}, ε_{ряд} – погрешность определения силы тяжести на пунктах опорной и рядовой сети, соответственно.

Для оценки качества съемки проводятся независимые контрольные наблюдения в объеме 5–10 %. Количество контрольных измерений должно быть не менее 50.

Рейс считается качественным, если уклонение измеренных значений силы тяжести от контрольных не превышает утроенную величину ошибки ε_0 , предусмотренную техническим проектом. Этот же принцип положен в основу

отбраковки наблюдений g_n на пункте, если количество измерений g > 3. Если $g_n = 2$ и максимальное уклонение превышает $3\sqrt{2} \cdot \varepsilon_0$, то необходимо выполнить дополнительные измерения g и отбраковку. Число забракованных наблюдений должно быть менее 2 % от общего количества измерений.

Камеральная обработка материалов выполняется после завершения полевых работ и предусматривает:

1. Повторное исследование гравиметров, включая определение цены оборота измерительного винта;

2. Переобработку результатов наблюдений и вычисление аномалий силы тяжести;

3. Составление каталогов опорных и рядовых пунктов;

4. Построение карт аномалий силы тяжести с редукциями Буге и в свободном воздухе;

5. Составление и защита отчета о выполненных работах.

ЛАБОРАТОРНЫЕ РАБОТЫ

ЛАБОРАТОРНАЯ РАБОТА № 1

ИССЛЕДОВАНИЕ ГРАВИМЕТРА ТИПА ГНУ-КВ

ЦЕЛЬ РАБОТЫ: освоить методику исследования гравиметра типа ГНУ-КВ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: перед началом работы необходимо изучить [28, гл. 4], [14, гл. 7,8], [33] и [9], а также подразд. 3.1 настоящего пособия.

СОДЕРЖАНИЕ РАБОТЫ

1. Изучить устройство гравиметра. Произвести внешний осмотр прибора. Освоить методику подготовки прибора к измерениям. Выполнить пробные измерения.

2. Настроить гравиметр на минимум чувствительности к наклону по уровням.

3. Изучить способы эталонирования гравиметра. Вычислить цену оборота измерительного винта гравиметра приближенным способом, используя данные п. 2.

4. Определить чувствительность гравиметра и вычислить его порог чувствительности.

5. Определить верхний предел измерения приращения силы тяжести без перестройки диапазона гравиметра.

- 6. Определить длительность переходного процесса.
- 7. Определить коэффициент смещения нуль-пункта гравиметра.
- 8. Написать отчет о проделанной работе и защитить его.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. При изучении устройства гравиметра использовать лекционный материал, изучить разд. 2 настоящего пособия, а также литературные источники [7, 11, 14, 27, 28, 39].

В отчете по данному пункту представить:

- Краткое описание устройства гравиметра;
- Схему чувствительной системы;
- Методику измерений с гравиметром и пробные отсчеты.

2. Методику настройки гравиметра на минимум чувствительности изучить по лекционным материалам, литературным источникам, приведенным в п. 1, а также по содержанию разд. 3.1.1 настоящего пособия.

Последовательность действий при выполнении данного исследования следующая.

Сначала необходимо настроить гравиметр на минимум чувствительности к наклону по продольному уровню:

1. Установить гравиметр на жесткое основание, подключить электропитание и отнивелировать прибор;

2. Расписать программу исследования продольного уровня (а) по образцу, приведенному в прил. 2: теоретические n^t и практические n^n отсчеты по головке винта, определяющие наклон гравиметра относительно вертикали, записать в графы 2 и 3 соответственно;

3. При горизонтальном положении гравиметра $n^t = 0$ взять отсчеты по шкале гравиметра S_1 и по часам t_1 и записать их в графы 7 и 5 прил. 2, табл. П.2.1;

4. Вращением подъемного винта по часовой стрелке наклонить гравиметр относительно вертикали на шесть делений;

5. Снять отсчеты по гравиметру S_2 и по часам t_2 и записать их в табл. П.2.1., прил. 2;

6. Повернуть подъемный винт против часовой стрелки на два деления и взять отсчеты по шкале гравиметра S_3 и по часам t_3 ;

7. Вращая подъемный винт против часовой стрелки *с шагом два деления*, выполнить измерения на всех установках подъемного винта n^n , расписанных в программе исследований;

8. Привести пузырек продольного уровня в нуль-пункт ($n^t = 0$) и взять отсчеты по шкале гравиметра S_9 и по часам t_9 .

Контролем правильности выполнения исследования является ход изменения отсчетов S_i : по мере уменьшения наклона гравиметра величина отсчетов уменьшается и при $n^T = 0$ отсчет S_0 будет минимальным, при увеличении угла наклона гравиметра величина отсчетов будет возрастать.

Выполнив программу исследования для продольного уровня, приступить к исследованию поперечного уровня.

При исследовании поперечного уровня наклон гравиметру задают двумя установочными винтами, которые вращают в разные стороны (по часовой и против хода часовой стрелки).

Последовательность действий, при этом следующая.

1. Отнивелировать гравиметр.

2. Расписать программу исследования для поперечного уровня (см. пример в прил. 2).

3. При горизонтальном положении прибора ($n^{T}=0$) взять отсчет по шкале гравиметра S_{1} и по часам t_{1} и записать их в графы 7 и 5 соответственно.

4. Повернуть левый подъемный винт против часовой стрелки, а правый – по часовой стрелке на три деления.

5. Взять отсчеты по гравиметру (S_2) и по часам (t_2) и записать их в таблицу.

6. Левый винт повернуть на одно деление по часовой стрелке, а правый – на одно деление против хода часовой стрелки.

7. Взять отсчет по гравиметру S_3 и снять показание часов (t_3).

8. Выполнить действия, описанные в пп. 6 и 7 при всех наклонах гравиметра (на всех установках подъемных винтов) в прямом ходе П.

9. Отсчеты по гравиметру S_8 и по часам t_8 переписать в графы 8 и 6 под номерами S_9 и t_9 соответственно, и продолжить измерения в обратном ходе, на тех же установках подъемных винтов, что и в прямом ходе. Для этого выполнить следующие действия.

10. Повернуть левый подъемный винт на одно деление против часовой стрелки, а правый – на одно деление по часовой стрелке.

11. Взять отсчеты по гравиметру S_{10} и по часам t_{10} , записать их в графы 8 и 6 табл. П. 2.1 (прил. 2).

12. Выполнить действия, описанные в пп. 10 и 11 при всех наклонах гравиметра (на всех установках подъемных винтов) в обратном ходе *O*.

13. После отсчетов S_{15} и t_{15} привести гравиметр в горизонтальное положение: на головках левого и правого подъемных винтов установить отсчеты n^{Π} , соответствующие $n^{T} = 0$.

14. Взять отсчеты по гравиметру (S_{16}) и по часам (t_{16}).

На этом исследование поперечного уровня заканчивается.

По результатам исследования построить на миллиметровке графики зависимости $S_i = f(n_i^{\Pi})$ – параболы для продольного и поперечного уровней. Для поперечного уровня парабола строится по средним значениям, полученным из прямого Π и обратного O ходов:

$$\overline{S}_i = \frac{S_i^{\Pi} + S_i^{O}}{2}.$$
(5.1)

Если ось симметрии параболы проходит через начало координат, то по данному уровню гравиметр настроен на минимум чувствительности к наклону.

В противном случае уровень необходимо отъюстировать.

При горизонтальном положении прибора установить на головке подъемного винта отсчет n^{Π} , через который «проходит» ось симметрии параболы. При этом пузырек уровня «уйдет» из нуль-пункта. Исправительными винтами уровня привести пузырек в нуль-пункт.

Выполнить контрольные измерения, наклонив прибор относительно вертикали в обе стороны на одинаковое количество делений подъемного винта *n*.

Если разность отсчетов $S(+n) - S(-n) \le 20$ делений – цель достигнута, уровень отъюстирован.

В отчете (по данному пункту) изложить физическую суть этого исследования, необходимость и частоту выполнения. Приложить таблицу с результатами исследования уровней, графики зависимости отсчетов от угла наклона по продольному и поперечному уровням. Сделать выводы о результатах исследования.

3. Определить цену оборота отсчетного устройства гравиметра приближенным способом, используя данные п. 2:

а) По результатам юстировки поперечного уровня построить график зависимости \overline{S}_n от *n*: по оси абсцисс отложить значения углов наклона *n* в оборотах подъемного винта, а по оси ординат – соответствующие средние значения по отсчетному устройству \overline{S}_n ;

б) По полученным точкам провести наиболее вероятную параболу и определить ее ось симметрии, положение которой относительно оси ординат определяет горизонтальное положение нити подвеса маятника, $\beta = 0^0$;

в) Исправляя все полученные значения угла на разность Δn между истинным (теоретическим) горизонтальным положением n^{T} и принятым (практическим) n^{Π} при построении графика $n^{\Pi} = n^{T} \pm \Delta n$, вычислить цену оборота измерительного устройства *C* для каждого отсчета *S_i* по формуле:

$$C_{i} = \frac{k \cdot (n^{T})^{2}}{S_{0} - \overline{S}_{i}}, \qquad (5.2)$$

где S_0 – отсчет по гравиметру при угле наклона $\beta = 0^\circ$;

 S_i – средний отсчет по гравиметру при заданном угле наклона β_i ;

п^{*T*} – число оборотов установочного винта гравиметра;

k – коэффициент, вычисленный по постоянным гравиметра;

$$k = 0.5 g (a/d)^2$$
, (5.3)

где *а* – шаг измерительного винта;

d – база гравиметра;

g – сила тяжести на пункте;

г) Вычислить среднее значение C цены оборота измерительного винта из всех значений C_i , полученных при различных углах наклона гравиметра β_i :

$$\overline{C} = \frac{\sum C_i}{n},$$

где *n* – количество значений *C_i*.

4. Определить верхний предел изменения силы тяжести Δ*g* без перестройки диапазона гравиметра:

а) Установить по шкале гравиметра минимальный (0 оборотов) и максимальный (15 оборотов) отсчет, каждый раз выводя блик маятника в поле зрения окуляра с помощью диапазонного устройства. Вращая микрометренный винт отсчетного устройства, следить за положением индекса на окулярной шкале. Как только блик маятника начнет движение по окулярной шкале, взять отсчет по микрометру S_1 – при минимальном обороте микровинта, S_2 – при максимальном;

б) Значение верхнего предела измерений без перестройки вычислить по формуле:

 $d = |C(S_1 - S_2)|, (5.4)$

где S_1 и S_2 – соответственно наибольшее и наименьшее значение отсчетов.

Полученное значение верхнего предела измерения без перестройки диапазона должно быть не менее 80 мГал [8].

5. Определить чувствительности и порог чувствительности гравиметра:

а) Гравиметр устанавливается на тумбу в рабочем положении;

б) С помощью измерительного устройства последовательно (троекратно) совместить отсчетный индекс гравиметра с каждым из двух ближайших штрихов окулярной шкалы, расположенных симметрично справа+Nи слева –N относительно нулевого отсчетного штриха и снять соответствующие отсчеты S_{+N} и S_{-N} , где N – номер штриха окулярной шкалы;

в) Вычислить средние отсчеты \overline{S}_{+N} и \overline{S}_{-N} в делениях отсчетной шкалы по формуле:

$$\overline{S}_{+N,-N} = \frac{\sum_{i=1}^{3} s_i}{3};$$
(5.5)

г) Чувствительность (деление окулярной шкалы, деленное на ускорение) вычисляется по формуле:

$$q = \left| \frac{\Delta \cdot L}{C(\overline{S}_{+N} - \overline{S}_{-N})} \right| \frac{MM}{M\Gamma a\pi}, \tag{5.6}$$

где Δ – видимое расстояние между штрихами окулярной шкалы, $\Delta = 0,1\,{\rm MM}\cdot 20^{\times} = 2\,{\rm MM}$;

L – количество делений окулярной шкалы между штрихами + *N* и – *N*. Порог чувствительности гравиметра вычисляется по формуле:

$$\sigma = C \sqrt{\frac{\left(\sum_{i=1}^{n} \sigma_i^2\right)}{n}},$$

$$S_1 + S_2$$

где $\sigma_i = S_2 - \frac{S_1 + S_3}{2};$

 S_1, S_2, S_3 - отсчеты по гравиметру на каждом штрихе;

n – количество измерений на каждом штрихе (n = 3).

Полученное значение чувствительности должно соответствовать ГОСТ 13017–83 [9].

6. Определить время становления отсчета:

а) Гравиметр устанавливают и закрепляют на вибрационном стенде, нивелируют, совмещают отсчетный индекс с отсчетным штрихом окулярной шкалы;

б) Прибор подвергают вибрации в течение 10 минут с частотой 20 ± 2 Гц и амплитудой $0, 2 \pm 0, 05$ мм, после чего установку выключают;

в) В течение 20 минут снимают отсчеты по гравиметру: в течение первых пяти минут не реже, чем через каждую минуту, а далее – не реже, чем через каждые две минуты;

г) Изменения показаний гравиметра Δg_i вычисляются по формуле:

 $\Delta g_i = C(S_i - S_0); \tag{5.7}$

в которой *S_i* – значение текущего отсчета в делениях отсчетной шкалы;

С – цена оборота отсчетного устройства;

д) Строится график $\Delta g_i = f(t_i)$. По оси абсцисс откладывается время в минутах, по оси ординат – отсчеты по шкале гравиметра в мГал. На графике проводятся две прямые параллельно оси абсцисс: первая – через точку графика, соответствующую моменту времени t = 20 минут; вторая – ниже первой на расстоянии, равном средней квадратической погрешности единичного измерения ε , вычисляемой по формуле:

 $\varepsilon = \varepsilon_0 + k \left(d - d_0 \right), \tag{5.8}$

где *d* – значение верхнего предела измерений гравиметра без перестройки диапазона, мГал;

ε, ε₀, d₀ – коэффициенты, соответствующие гравиметру данного класса точности. Выбираются из ГОСТ 13017–83 [9, табл. 2].

Из точки пересечения второй линии с кривой $\Delta g_i = f(t_i)$ проводят параллельно оси ординат прямую, отсекающую на оси абсцисс отрезок, соответствующий времени становления отсчета t_{cT} . Полученное значение времени становления отсчета не должно превышать значения ГОСТ 13017–83 [9].

7. Определить смещение нуль-пункта:

a) Гравиметр устанавливают в рабочее положение на жесткое основание и в течение 10 часов через равные промежутки времени берут отсчеты по отсчетному устройству;

б) По результатам исследования строят график зависимости отсчетов от времени. По оси абсцисс откладывают время наблюдения T_i , а по оси ординат – соответствующий отсчет. Все полученные на графике точки последовательно соединяют между собой;

в) Если все точки графика легли в пределах точности на одну прямую, значит такое смещение нуль-пункта у данного гравиметра линейно во времени;

г) Значение смещения нуль-пункта вычисляют по формуле:

$$k = \frac{\left(S_n - S_1\right)C}{\Delta t},\tag{5.9}$$

где С – цена оборота микрометра;

 S_n и S_1 – отсчеты по гравиметру в оборотах;

 Δt – значение интервала времени между отсчетами S_n и S_1 ;

 $\Delta t = T_n - T_1. \tag{5.10}$

Полученное значение смещения нуль-пункта не должно превышать значения, указанного в ГОСТ 13017–83 [8].

На основании выполненных исследований дают заключение о пригодности гравиметра к работе.

ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ

Исследования гравиметра ГНУ-КВ № 474

1. Внешний осмотр прибора.

Корпус прибора без вмятин. Движение всех винтов плавное по всей длине хода. Деления шкалы в поле зрения окуляра четкие, изображение маятника упругой системы четкое, параллельно штрихам шкалы. Поле зрения шкалы освещено равномерно.

2. Юстировка гравиметра на минимум чувствительности по уровням: продольному и поперечному.

В табл. 5.1 и на рис. 5.1 приведены результаты исследования продольного уровня гравиметра ГНУ-КВ № 474.

n^{T} ,обор.	<i>п</i> ^П ,обор.	^s ,обор.	<i>п ^т</i> ,обор.	<i>п</i> ^П ,обор.	^s ,обор.
+0,6	0,3	7,828	-0,1	1,0	7,349
+0,5	0,4	7,702	-0,2	0,1	7,400
+0,4	0,5	7,608	-0,3	0,2	7,475
+0,3	0,6	7,502	-0,4	0,3	7,552
+0,2	0,7	7,408	-0,5	0,4	7,651
+0,1	0,8	7,367	-0,6	0,5	7,766
0,0	0,9	7,349	_	_	_

Таблица 5.1. Результаты исследования продольного уровня

Рис. 5.1. График зависимости отсчета от угла наклона гравиметра ГНУ-КВ № 474 в плоскости колебания маятника

Вывод: продольный уровень гравиметра ГНУ-КВ № 474 установлен на минимум чувствительности. Юстировка уровня не требуется.

3. Исследование поперечного уровня на минимум чувствительности и определение цены оборота отсчетного устройства гравиметра ГНУ-КВ № 474. Результаты исследования поперечного уровня гравиметра и вычисление цены оборота измерительного винта представлены в табл. 5.2 и на рис. 5.2.

Таблица 5.2. Результа	аты исследования поперечного уровня	и и определение цены
	оборота измерительного винта гравим	летра ГНУ-КВ № 474

		Отсчет	<i>s</i> обор.			
<i>п ^т</i> ,обор	<i>n ^П</i> ,обор. л/п	Ходпрямо й	ход обратный	<u></u> <i>s</i> _{<i>n</i>} , обор.	$s'_0 - \overline{s}_n$,обор.	<i>С</i> , мГал/обор.
+0,6	0,7/0,1	8,467	8,577	8,522	-0,746	-8,526
+0,4	0,6/0,2	8,121	8,115	8,118	-0,342	-8,265
+0,2	0,5/0,3	7,859	7,851	7,855	-0,079	-8,945
0,0	0,4/0,4	7,786	7,765	7,776	0	0
-0,2	0,3/0,5	7,880	7,849	7,864	-0,088	-8,030
-0,4	0,2/0,6	8,119	8,102	8,110	-0,334	-8,463
-0,6	0,1/0,7	8,534	8,534	8,534	-0,758	-8,391

 $[\]overline{C} = -8,437$ _мГал/обор.

Рис. 5.2. График зависимости отсчета от угла наклона гравиметра ГНУ-КВ № 474 в плоскости оси вращения маятника

Цена деления отсчетного устройства гравиметра ГНУ-КВ № 474, полученная приближенным методом по результатам исследования поперечного уровня, равна –8,437 мГал/обор.

Вычисление *С* выполнено по формулам (5.2) и (5.3). При этом $S_0 = 7,776$ обор, a = 0,75 мм, d = 125 мм, g = 981460 мГал.

Вывод: поперечный уровень гравиметра ГНУ-КВ № 474 установлен на минимум чувствительности. Юстировка уровня не требуется.

4. Определение верхнего предела изменения силы тяжести Δg без перестройки диапазона гравиметра:

 $S_1 = 12,898$ обор., $S_2 = 0,065$ обор., C = -8,437 мГал/обор;

 $\Delta g = |C(S_1 - S_2)| = 108,272$ мГал.

Диапазон измерения силы тяжести гравиметра ГНУ-КВ № 474 без перестройки удовлетворяет требованиям ГОСТ 13017–83 [9].

5. Определение чувствительности.

В соответствии с формулой (5.6), L = 20 дел, $\Delta = 2$ мм.

$S_{+N}^{o {\it foop}.}$	$S_{-N}^{\ o f o o p}$.
8,736	6,908
8,735	6,910
8,737	6,909
\overline{S} 8,736	6,909

$$q = \left| \frac{40}{-8,437 \cdot 1,827} \right| = 2,595$$
дел/мГал.

Чувствительность гравиметра ГНУ-КВ № 474 соответствует ГОСТ 13017–83 [9].

6. Определение времени становления отсчета гравиметра ГНУ-КВ № 474. \overline{C} = -8,437 мГал/обор. (представлены в табл. 5.3 и на рис. 5.3).

Таблица 5.3. Время и отсчеты по шкале гравиметра

<i>t</i> _{<i>m</i>, <i>s</i>}	10 ^m 00 ^s	$10^{\rm m}30^{\rm s}$	11 ^m 00 ^s	$12^{m}00^{s}$	13 ^m 00 ^s	14 ^m 00 ^s
S обор.	7,724	7,742	7,750	7,770	7,775	7,777
$S_{ m M\Gamma}$ ал	-65,167	-65,319	-65,387	-65,555	-65,598	-65,615
$t_{m,s}$	$15^{m}00^{s}$	$17^{m}00^{s}$	19 ^m 00 ^s	$21^{m}00^{s}$	$25^{m}00^{s}$	$30^{m}00^{s}$
S обор.	7,777	7,777	7,777	7,777	7,777	7,777
S _{мГал}	-65,615	-65,615	-65,615	-65,615	-65,615	-65,615

Рис. 5.3. График времени становления отсчета гравиметра ГНУ-КВ № 474

По формуле (5.8), с учетом данных табл. 2 из [9] получим:

 $\varepsilon = [0, 03 + 15 \cdot 10^{-5} (108, 272 - 100)] \approx 0,031$ мГал.

Время становления отсчета – 2 мин, что соответствует ГОСТ 13017– 83 [9].

7. Определение смещения нуль-пункта гравиметра ГНУ-КВ № 474:

 $\overline{C} = -8,437$ мГал/обор. (представлены в табл. 5.4 и на рис. 5.4).

Дата	Время	0	тсчеты,обор.	[.] бор.	$g^{ m r},$ мГал	
	h m	<i>S</i> ₁	S ₂	S ₃		
8 августа	9 15	7,764	7,765	7,762	7,764	-65,505
1998 г.	10 15	7,758	7,760	7,756	7,758	-65,454
	11 15	7,743	7,748	7,745	7,745	-65,345
	12 15	7,737	7,732	7,730	7,733	-65,243
	13 15	7,721	7,724	7,720	7,722	-65,151
	14 15	7,715	7,712	7,710	7,712	-65,066
	15 15	7,709	7,705	7,702	7,705	-65,007
	16 15	7,693	7,695	7,691	7,693	-64,906
	17 15	7,680	7,676	7,682	7,679	-64,788
	18 15	7,668	7,665	7,668	7,667	-64,686
	19 15	7,652	7,656	7,651	7,653	-64,568
	20 15	7,640	7,643	7,639	7,641	-64,467

Таблица 5.4. В	ремя и отсчеты по	шкале г	равиметра

Рис. 5.4. График смещения нуль-пункта гравиметра ГНУ-КВ № 474

Вывод: смещение нуль-пункта гравиметра ГНУ-КВ № 474 можно считать линейным во времени. К = 2,3 мГал/сутки, что не удовлетворяет требованию ГОСТ 13017–83 [9].

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Статический метод определения силы тяжести.
- 2. Устройство гравиметра ГНУ-КВ.

3. Влияние Луны и Солнца *g*_{ЛС}температуры (t), давления (B), наклона β на показания гравиметра.

- 4. Подготовка гравиметра к полевым измерениям.
- 5. Поверки и исследования гравиметра.
- 6. Требования ГОСТ к основным параметрам гравиметра ГНУ-КВ.

ЛАБОРАТОРНАЯ РАБОТА № 2

ОБРАБОТКА ГРАВИМЕТРИЧЕСКОГО РЕЙСА

ЦЕЛЬ РАБОТЫ: освоение приемов первичной обработки гравиметрических измерений.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: выполнение задания необходимо начинать после изучения работ [39, гл. 1, 7, 8], или [28, гл. 1, 4, 7], или [27, гл. 1, 6, 8], а также изучения работ [9, 23, 17, 14].

СОДЕРЖАНИЕ РАБОТЫ

Вычислить абсолютные значения ускорения силы тяжести g_i на пунктах гравиметрической сети по результатам измерений, полученных в гравиметрических рейсах, выполненных по одной из предложенных методик (a, δ , θ), указанных в задании.

Исходные данные для выполнения задания по вариантам помещены в прил. 4. Номер варианта выбирается по последней цифре шифра. Она соответствует номеру гравиметра из табл. П.4.1. Из табл. П.4.2 выбираются по номеру гравиметра шкаловые поправки f (s). Результаты измерений в гравиметрическом рейсе выбираются из табл. П.4.3–П.4.5. При этом, если последняя цифра шифра находится в интервале 1–3, необходимо использовать данные табл. П.4.3 (схема a); 4–6 – данные табл. П.4.4 (схема δ); 7–10 – данные табл. П.4.5 (схема в).

Общие теоретические сведения

Гравиметрическим рейсом (далее – рейс) называется совокупность последовательных наблюдений с гравиметром на нескольких пунктах, объединенных общей характеристикой смещения нуль-пункта прибора.

Смещением нуль-пункта гравиметра называется непрерывное изменение отсчета по шкале прибора с течением времени, которое является следствием изменения упругих свойств материала, используемого для изготовления чувствительной системы.

Измерения в рейсе начинают и заканчивают на опорных гравиметрических пунктах (ОГП), на которых известно абсолютное значение ускорения силы тяжести g_0 .

Значение силы тяжести g_i на точках съемочной сети вычисляется по формуле:

 $g_i = g_0 + \Delta g_i, \tag{5.11}$

где Δg_i – приращение силы тяжести между исходным и определяемым пунктами, получаемое из обработки гравиметрических измерений, мГал.

Для формулы 5.11 Δg_i вычисляется следующим образом:

$$\Delta g_{i} = g_{i}^{s} - g_{0}^{s} + (\delta g_{HN})_{i}, \qquad (5.12)$$

где g_i^s и g_0^s – измеренные значения силы тяжести соответственно на определяемом и опорном пунктах, мГал;

(δg_{Hn})_{*i*} – поправка за смещение нуль-пункта гравиметра, мГал.

Измеренное значение силы тяжести на определяемом пункте вычисляется по формуле:

$$g_{i}^{s} = \left(g_{i}^{s}\right)' + f\left(s\right) + \delta g_{\mathcal{I}C}$$

$$(5.13)$$

где $(g_i^3)'$ – отсчет по шкале гравиметра, мГал.

Величина g_i^s равна

$$\left(g_{i}^{s}\right)' = C_{T_{i}} \cdot \bar{s}_{i}, \qquad (5.14)$$

где C_{T_i} – цена оборота микрометренного винта гравиметра при температуре T_i , мГал/оборот,

$$C_{T_i} = C_0 + \alpha_C (T_i - T_0), \qquad (5.15)$$

где C_0 – цена деления отсчетного устройства гравиметра при $T_0 = 0$ °C, мГал/оборот;

*α*_{*C*} – эквивалентный температурный коэффициент цены оборота микровинта, мГал/(оборот × градус);

*s*_{*i*} – средний отсчет по микрометру на *i*-м пункте, в оборотах:

$$\bar{s}_i = \frac{\sum_{i=1}^{n} s_i}{n};$$
 (5.16)

n – количество отсчетов s_i по микрометру на *i*-ом пункте, принятых в обработку;

f(s) – поправка, учитывающая нелинейность шкалы микрометра, в мкГал;

 δg_{JC} – поправка за приливное влияние Луны и Солнца, в мГал,

 $\delta g_{\mathcal{I}C} = \delta g_{\mathcal{I}} + \delta g_{C}.$

Значения C_0 , α_c и f(s) определяются при лабораторных исследованиях гравиметров по методике, изложенной в работе [6]. При вычислении они известны. Значение $\delta g_{\mathcal{IC}}$ рассчитывается по формулам, приведенным в работах [1, 2, 7]. В рейсах продолжительностью менее трех часов $\delta g_{\mathcal{IC}}$ не учитывается.

Поправка за смещение нуль-пункта гравиметра вычисляется по формуле:

$$\left(\delta g_{_{HN_{.}}}\right)_{i} = k \cdot \Delta t_{i} ; \quad \Delta t_{i} = t_{i} - t_{0} , \qquad (5.17)$$

где *k* – коэффициент (скорость) смещения нуль-пункта гравиметра в рейсе, мГал/час;

 t_i и t_0 – время взятия отсчетов по прибору на определяемом и исходном пунктах соответственно, в часах и минутах.

В практике гравиметрических работ рейсы обычно выполняются по следующей схеме.

1. Прямой ход между двумя опорными пунктами.

2. Замкнутый ход с одним опорным пунктом.

3. Прямой и обратный ход.

1. Для рейса, выполненного между двумя опорными гравиметрическими пунктами в прямом ходе, *k* вычисляется по формуле:

$$k = \frac{\left(s_{01} - s_{02}\right)C - \left(g_{01} - g_{02}\right)}{t_2 - t_1},$$
(5.18)

где S_{01} и S_{02} – отсчеты по гравиметру на опорных гравиметрических пунктах ОГП-1 и ОГП-2;

С – цена оборота измерительного винта гравиметра;

 g_{01} и g_{02} – значения силы тяжести на пунктах ОГП-1 и ОГП-2, полученные из уравнивания опорной сети;

*t*₁ и *t*₂ – время снятия отсчетов по шкалам гравиметра на опорных пунктах ОГП-1 и ОГП-2.

2. Если рейс начинается и заканчивается на одном пункте, то

$$k = \frac{\left(g_{1}^{s}\right)_{H} - \left(g_{1}^{s}\right)_{k}}{t_{\kappa} - t_{H}},$$
(5.19)

где $(g_1^s)_{\mu}$ и $(g_1^s)_k$ – измеренное значение силы тяжести на опорном пункте в начале и в конце рейса соответственно;

 t_{H} и t_{K} – время снятия отсчетов по шкале микрометра соответственно в начале и в конце рейса.

3. В рейсе, выполненном по методике «прямой и обратный ход», коэффициент смещения нуль-пункта гравиметра вычисляется по формуле:

$$k = \frac{\sum_{i=1}^{m} \Delta g_i^s \cdot \Delta T_i}{\sum_{i=1}^{m} \Delta T_i^2},$$
(5.20)

где Δg_i^s и ΔT_i – разности измеренных значений силы тяжести и времени на одноименных пунктах в прямом (Π) и обратном (O) ходе;

m – количество пунктов с повторными измерениями Δg_i^s и ΔT_i , т. е.

 $\Delta g_{i}^{s} = (g_{i}^{s})'_{\Pi} - (g_{i}^{s})'_{O}; \quad \Delta T_{i} = (t_{i})_{O} - (t_{i})_{\Pi}.$ (5.21) Последовательность действий при обработке гравиметрического рейса.

1. Выписать из полевого журнала в ведомость обработки (табл. 2.1) номера съемочных точек или их названия, средние моменты времени \bar{t}_i снятия отсчетов по шкале микрометра в долях часа и средние отсчеты \bar{S}_i в оборотах микрометра. 2. Вычислить измеренные значения силы тяжести в точках наблюдения g_i^s по формулам (5.13) – (5.15).

3. Вычислить поправки за смещение нуль-пункта гравиметра по формулам (5.17) и (5.18), а при необходимости – по формулам (5.19) и (5.20).

4. Вычислить приращение силы тяжести Δg_i между определяемым и исходным пунктами по формуле (5.12).

5. Вычислить абсолютные значения силы тяжести на всех точках съемочной сети по формуле (5.11).

Пример обработки гравиметрического рейса

Гравиметрический рейс выполнен в прямом ходе между двумя опорными пунктами с абсолютными значениями силы тяжести 981 245,000 мГал и 981 217,500 мГал.

Измерения проведены гравиметром ГНУ-КВ № 111 с ценой оборота отсчетного устройства $C_0 = 7,0001$ мГал/оборот и эквивалентным температурным коэффициентом $\alpha_C = -13,17 \cdot 10^{-4}$ мГал/(оборот · градус) (см. прил. 4, табл. П.4.1).

Результаты обработки полевого гравиметрического журнала (средний отсчет по шкале микрометра \overline{S}_i и время его снятия t_i (в долях часа), название *i*-го пункта, а также температура гравиметра) вносятся в графы 1–4 ведомости обработки гравиметрического рейса (табл. 5.1).

Значения шкаловых поправок f(s) для каждого оборота микрометренного винта можно выбрать из табл. П.4.2. При этом значение поправки на доли оборота определяется линейной интерполяцией.

Для определения f(s) можно построить график изменения f(s) по табличным значениям и «снимать» с него величину поправки. Пример такого графика приведен на рис. 5.5.

При обработке гравиметрических рейсов рекомендуется использовать ведомость обработки и необходимые формулы для вычислений, приведенные в прил. 5, табл. 5.1.

Назв. пункто в	t _i , час	T, ⁰C	<u></u> <i>s</i> _{<i>i</i>} , обор.	$\left(g_{i}^{s}\right)',$ мГал	f(<u></u> s _i), мкГал	δ <i>g_{ЛС}</i> , мГал	<i>g</i> _{<i>i</i>} ^{<i>s</i>} , мГал	Δt _i , ч	(δ g _{нл.}) _i , мГал	Δg _i , мГал	<i>g_i</i> , мГал
1	2	3	4	5	6	7	8	9	10	11	12
ΟΓΠ1	9,00	12,0	4,500	-31,572	6	-	-31,566	0,00	0,000	0,000	981 245,000
1	9,20	12,0	5,200	-36,483	-11	-	-36,494	0,20	-0,009	-4,937	240,063
2	9,30	12,0	6,400	-44,402	-28	-	-44,930	0,30	-0,014	-13,378	231,622
3	9,70	12,5	2,000	-14,033	32	-	-14,011	0,70	-0,032	17,533	262,533
4	9,90	12,5	6,200	-43,503	-33	-	-43,536	0,90	-0,040	-12,010	232,990
5	10,00	12,5	5,100	-35,784	-8	-	35,792	1,00	-0,045	-4,451	240,549
ОГП2	11,00	13,0	8,400	-58,945	-31	-	-58,976	2,00	-0,090	-27,500	981 217,500

Таблица 5.5. Ведомость обработки результатов гравиметрических измерений

Рис. 5.5. График шкаловых поправок $f(\bar{s})$ гравиметра ГНУ-КВ № 111 (построен по данным табл. П.4.2. прил. 4)

После выполнения вычислений составляются ведомости значений силы тяжести на пунктах съемочной сети и производится оценка точности результатов измерений.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каким еще способом можно вычислить поправку за смещение нульпункта гравиметра?

2. Что характеризует шкаловая поправка f(s) и что определяет ее величину?

3. Перечислите и охарактеризуйте способы определения цены деления отсчетного устройства гравиметра.

4. Что такое абсолютное значение ускорения силы тяжести и каковы способы его определения?

ЛАБОРАТОРНАЯ РАБОТА № 3

ВЫЧИСЛЕНИЕ ПОПРАВОК ЗА ПРИЛИВНОЕ ВЛИЯНИЕ ЛУНЫ И СОЛНЦА

ЦЕЛЬ РАБОТЫ: освоение методики расчета поправок за гравитационное влияние Луны и Солнца с помощью АЕ и на ПЭВМ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: к выполнению лабораторной работы следует приступить после изучения работы [28, § 9] или [39, § 63–65], или [27, с. 63–66]. Исходные данные для выполнения лабораторной работы № 3 выдаются преподавателем.

СОДЕРЖАНИЕ РАБОТЫ

Для пункта с географическими координатами φ и λ вычислить поправку, учитывающую притяжение Луны и Солнца $\delta g_{\mathcal{IC}}$ в момент декретного времени D_n на дату наблюдения.

ОБЩИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Сила тяжести на земной поверхности претерпевает периодические изменения из-за приливного влияния Луны и Солнца. Максимальное возмущение от Луны достигает 0,165 мГал, а от Солнца – 0,076 мГал. Суммарный эффект составляет 0,241 мГал.

В настоящее время погрешность измерения ускорения силы тяжести составляет 1.10⁻⁹ м·с⁻² (0,1 мкГал) [5].

В связи с этим, при высокоточных гравиметрических измерениях и, особенно, при развитии опорных гравиметрических сетей с помощью маятниковых приборов и гравиметров типа ГАГ-2, когда замыкание связи происходит через значительные промежутки времени и при разных фазах лунно-солнечных возмущений, необходимо учитывать поправку за гравитационное влияние Луны и Солнца $\delta g_{ЛC}$.

Для вычисления $\delta g_{\mathcal{IC}}$ можно использовать формулы, приведенные в работах [26, 25, 37, 26]:

 $\delta g_{\mathcal{I}C} = (\delta g_{\mathcal{I}} + \delta g_C) \cdot k, \qquad (5.22)$

где δg_{Π} и δg_{C} – вычисленные поправки за гравитационное влияние Луны и Солнца;

k – коэффициент упругости Земли. Для центральной Азии – 1,14, Западной Сибири – 1,16, Москвы – 1,17, Пулково (Санкт-Петербург) – 1,238.

$$\delta g_{\Pi} = \frac{2D_{\Pi}}{\overline{R}} \left(\cos 2z_{\Pi} + \frac{1}{3} \right) \cdot 10^{5}, \text{ мГал} \left\{ \delta g_{C} = \frac{2D_{C}}{\overline{R}} \left(\cos 2z_{C} + \frac{1}{3} \right) \cdot 10^{5}, \text{ мГал} \right\},$$
(5.23)

где z_{π} и z_{C} – зенитные расстояния светил;

 \overline{R} – средний радиус Земли, \overline{R} = 6 371 024";

 D_{Π} и D_{C} – постоянные Дудсона для Луны и Солнца. Они вычисляются по следующим формулам:

$$D_{\pi} = \frac{3}{4} \frac{\mu_{\pi} \overline{g} \overline{R}^{4} \sin^{3} p_{\pi}}{a^{3}}, \text{ M} \cdot \text{c}^{-2} \\ D_{c} = \frac{3}{4} \frac{\mu_{c} \overline{g} \overline{R}^{4} \sin^{3} p_{c}}{a^{3}}, \text{ M} \cdot \text{c}^{-2} \end{cases} \right\},$$
(5.24)

где μ_{Π} и μ_{C} – величины, равные отношению масс Луны m_{Π} и Солнца m_{C} к массе Земли M_{\oplus} соответственно, т. е.

$$\mu_{\mathcal{I}} = \frac{m_{\mathcal{I}}}{M_{\oplus}}, \quad \mu_{\mathcal{C}} = \frac{m_{\mathcal{C}}}{M_{\oplus}}; \quad (5.25)$$

а – большая полуось земного эллипсоида, м;

p^{<i>C} и *p^{<i>T*} – горизонтальный параллакс Луны и Солнца, в градусной мере;

 \overline{g} – среднее значение ускорения силы тяжести для Земли. Вычисляется по формуле:

$$\overline{g} = \frac{fM_{\oplus}}{\overline{R}^2}, \,\mathbf{M} \cdot \mathbf{c}^{-2} \,, \tag{5.26}$$

где f – гравитационная постоянная, м³ / кг · с².

Горизонтальный параллакс Солнца можно выбрать из таблицы «Аберрация, параллакс Солнца», а горизонтальный параллакс Луны выбирается из таблицы «Эфемериды Луны» Астрономического ежегодника (АЕ) [2].

Горизонтальные параллаксы Солнца и Луны можно вычислить по формулам:

$$\sin p_{c} = \frac{a}{r_{c}}, \text{ или } p_{c} = \frac{8,794''}{R_{c}}, \sin p_{\pi} = \frac{a}{r_{\pi}}, \tag{5.27}$$

где $r_{\mathcal{I}}$ и $r_{\mathcal{C}}$ геоцентрическое расстояние от Земли до Луны и до Солнца соответственно;

 R_{C} – радиус-вектор Солнца, в астрономических единицах (а. е.).

Эти величины имеются в соответствующих таблицах АЕ [2].

При выполнении работы все вычисления необходимо выполнять в системе СИ (кг, м, с) [34]. Необходимые справочные данные о Земле, Луне и Солнце приведены в прил. 1.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

По теореме косинусов для стороны параллактического треугольника имеем:

 $\cos z = \sin \varphi \cdot \sin \delta + \cos \varphi \cdot \cos \delta \cdot \cos t, \qquad (5.28)$

где ф – широта места наблюдения;

δ и *t* – склонение и часовой угол светила.

Склонение Солнца вычисляется по формуле

 $\delta_C = \delta_0 + h \cdot v_\delta, \qquad (5.29)$

где δ_0 – склонение Солнца на дату наблюдения на 0^h земного динамического (эфемеридного) времени (TDT). Выбирается из AE, таблица «Солнце»;

*v*_δ – часовое изменение склонения Солнца;

h – интерполяционный множитель. Вычисляется по формуле

 $h = (\text{TDT})^h = UT + \Delta T, \qquad (5.30)$

где *UT* – всемирное время (время на меридиане Гринвича);

Δ*T* – поправка, учитывающая вариации скорости вращения Земли. Выписывается из АЕ, раздел «Общие замечания».

Всемирное время *UT* вычисляется по формуле:

 $UT = D_n - (n+k), \tag{5.31}$

где D_n и n – декретное время и номер часового пояса в пункте наблюдения соответственно;

k – сезонное число. В период действия летнего времени k = 2, зимнего времени k = 1.

Поправка v_{δ} вычисляется по формуле:

$$v_{\delta} = v_{\delta_0} + \frac{h^h \cdot D_{\delta}}{48^h}, D_{\delta} = v_{\delta_1} - v_{\delta_0} , \qquad (5.32)$$

где v_{δ_0} и v_{δ_1} – часовое изменение склонения Солнца на дату наблюдения и на последующую дату соответственно. Выбирается из АЕ, таблица «Солнце».

Часовой угол Солнца вычисляется по формуле:

 $t_{C} = E + m,$ (5.33)

где *Е* – уравнение времени η плюс 12 часов, т. е.

$$E = \eta + 12^{h} ; \qquad (5.34)$$

т – местное среднее время.

Параметр Е вычисляется по формуле:

$$E = E_0 + h v_E, (5.35)$$

где E_0 выбирается из таблицы «Солнце» на дату наблюдения в ноль часов эфемеридного времени из столбца «Уравнение времени + 12 часов»;

v_E часовое изменение уравнения времени. Вычисляется по формуле:

$$v_E = v_{E_0} + \frac{h^h D_E}{48^h}; D_E = v_{E_1} - v_{E_0},$$
 (5.36)

где v_{E_0} и v_{E_1} – часовое изменение уравнения времени на дату наблюдения и на последующую дату. Выбирается из таблицы «Солнце» (столбец «часовое изменение уравнения времени»).

Местное среднее солнечное время вычисляется по формуле:

 $m = UT + \lambda, \qquad (5.37)$

где λ – долгота пункта наблюдения. К востоку от Гринвича + λ , к западу от Гринвича – λ .

Часовой угол Луны вычисляем по формуле:

 $t_{\mathcal{I}} = s - \alpha_{\mathcal{I}} \tag{5.38}$

где *s* – местное звездное время;

а л – прямое восхождение Луны на момент наблюдения.

Местное звездное время вычисляется по формуле:

$$S = S_0 + UT + UT \cdot \mu + \lambda, \qquad (5.39)$$

где *S*₀ – истинное звездное время в гринвическую полночь. Выбирается из AE, таблицы «Звездное время» на дату наблюдения;

 μ – коэффициент для перехода от среднего солнечного времени к звездному, $\mu = 0,0027379$.

Склонение δ_{Π} и прямое восхождение α_{Π} Луны вычисляются с помощью AE, таблицы «Луна» по формуле:

$$f(x) = \sum_{i=0}^{n} A_{i} T_{i}(x), \qquad (5.40)$$

где f(x) – искомая функция (α или δ);

x – нормализованный аргумент. Вычисляется по формуле: $x = \frac{2h}{2} - 1,$ (5.41)

где *h* – интерполяционный множитель (см. (5.30));

ω – табличный интервал аргумента – 24^h;

 $T_i(x)$ – полиномы Чебышева. Вычисляются по формуле:

 $T_i(x) = \cos(i \arccos x), \quad (i = 0, 1, 2, \dots, n),$ (5.42)

где A_i – постоянные числовые коэффициенты для вычисления искомой функции. Они приведены в АЕ в таблице «Луна. Коэффициенты полиномов Чебышева».

Необходимо отметить, что приведенные в таблице интерполяционные коэффициенты A_i пригодны лишь для интервалов времени, которым они соответствуют. Использование коэффициентов A_i , не соответствующих рассматриваемому интервалу, приведет к неверным результатам.

Далее по формуле (5.28) вычисляется зенитное расстояние Солнца z_C и Луны z_{π} , по формуле (5.24) – постоянные множители D_C и D_{π} и по формулам (5.23) и (5.22) – поправки за гравитационное влияние Солнца и Луны – δg_C , δg_{π} и $\delta g_{\pi C}$.

Пример выполнения работы

Для пункта с широтой $\varphi = 31^0 40'24, 5''$ и долготой $\lambda = 9^h 18^m 10, 1^s$ вычислить поправки δg_C , δg_{π} и $\delta g_{\pi C}$ на момент декретного времени $D_n = 6^h 57^m 36, 4^s 13$ января 1988 г.

Вычисления с помощью АЕ рекомендуется выполнять в таблице (табл. 5.6)

1. Вычисление δg_{C.}

Таблица 5.6. Исходные данные и результаты вычислений поправокза влияние Луны и Солнца

Номер операции	Элементы формул	Результаты вычислений	Пояснения(номера формул)
1	D_n	$6^{h}57^{m}36, 4^{s}$	
2	n+1	10 ^{<i>h</i>}	$n = 9, n = f(\lambda)$
3	UT	20 ^{<i>h</i>} 57 ^{<i>m</i>} 36,4 ^{<i>s</i>}	формула (5.31)
4	ΔT	57,0 ^s	АЕ, 1988 г., с. 609.
5	TDT	$20^{h}58^{m}33,4^{s}$	UTD соответствует
6	$h = (\text{TDT})^h$	20,97594 ^h	12 января 1988 г.
Номер операции	Элементы формул	Результаты вычислений	Пояснения (номера формул)
9	<i>v</i> _{δ0}	23,448″	АЕ, 1988 г., с.10 (на 12.01)
8	v_{δ_1}	24,506"	АЕ, 1988 г., с.10 (на 13.01)
13	D_{δ}	1,058″	формула (5.32)
14	$D_{\delta}\cdot h/48$	0,462″	
8	v_{δ_0}	23,448″	
15	v _δ	23,910″	формула (5.32)
16	$h \cdot v_{\delta}$	8'21,32"	501,5347":60=8,3589'
7	δ_0	-21 ⁰ 48'20,03"	АЕ, 1988 г., с.10 (на 12.01)
17	δ_	-21 ⁰ 39'59,71"	формула (5.29)
25	t_c^0	271,889696 ⁰	t_c в градусной мере
24	t _c ^h	18,12597972 ^{<i>h</i>}	t_c в часовой мере
3	UT	20 ^{<i>h</i>} 57 ^{<i>m</i>} 36,4 ^{<i>s</i>}	см. операцию № 3
23	λ	9 ^{<i>h</i>} 18 ^{<i>m</i>} 10,1 ^{<i>s</i>}	
22	E	$11^h 51^m 47,027^s$	формула (5.35)
10	E_0	11 ^h 52 ^m 07,537 ^s	АЕ, 1988 г., с. 10 (на 12.01)
21	$h \cdot v_{e}$	$-20,510^{s}$	
20	v _e	$-0,9778^{s}$	формула (5.36)
19	$D_E \cdot h/48$	0,0106 ^s	
11	v_{E_0}	$-0,9884^{s}$	
18	D_E	0,0242 <i>s</i>	формула (5.36)
11	v_{E_0}	-0,9884 ^s	АЕ, 1988 г., с.10 (на 12.01)
12	v_{E_1}	$-0,9642^{8}$	

26	Z_{C}	$99,658779^0$	формула (5.28)
18	D_E	0,0242 ^s	формула(5.36)
27	$D_{C}, D_{\mathcal{I}}$		формула (5.24)
28	δg_C	−0,023мГал	формула (5.23)

2. Вычисление δg_{π} .

По формуле (5.41) вычисляем нормализованный аргумент x функции f(x):

 $x = \frac{2 \cdot 20,97594^{h}}{24^{h}} - 1 = 0,747945.$

По формуле (5.42) вычисляем полиномы Чебышева $T_i(x)$ при i = 0, 1, 2, ..., n; n = 5:

 $T_0(x) = 1;$ $T_1(x) = 0,747995;$ $T_2(x) = 0,1189930;$ $T_3(x) = -0,5699827;$ $T_4(x) = -0,9716814;$ $T_5(x) = -0,883643.$

Выписываем из АЕ (с. 60) постоянные числовые коэффициенты A_i на 12 января 1988 г. для вычисления f(x): α_{Π} и δ_{Π} соответственно:

	α $_{J}$	ðл
A_0	$201,21018570$ 0	-11,50206569 ⁰
A_1	$5,76290375$ 0	-2,78101723 ⁰
A_2	$0,04833886$ 0	$0,01883027$ 0
A_3	164 785	128 697
A_4	-160	2 370
A_5	- 69	46

Вычисляем $\alpha_{\mathcal{I}}$ и $\delta_{\mathcal{I}}$ по формуле (5.40), подставляя вместо A_i соответствующие коэффициенты:

 $\alpha_{\Pi} = 205,525624^{0} = 13,7017083^{h} = 13^{h}42^{m}06,150^{s};$

 $\delta_{\Pi} = -13,580769^{0} = -13^{0}34'50,77''.$

По формуле (5.39) вычисляем местное звездное время, предварительно выписав из AE (с. 6, таблица «Звездное время») S_0 на 0^h TDT12 января 1988 г.:

 $S_0 = 7^{h} 22^{m} 52,3050^{s};$ $s = 7^{h} 22^{m} 52,305^{s} + 20^{h} 57^{m} 36,4^{s} (1+0,0027379) + 9^{h} 18^{m} 10,1^{s} =$ $= 7,381196^{h} + 20,960111^{h} \cdot 1,0027379 + 9,32806^{h} = 13,701500^{h} = 13^{h} 42^{m} 05,4^{s}.$ Вычисляем часовой угол Луны по формуле (5.38):

 $t = 13^{h} 42^{m} 05, 4^{s} - 13^{h} 42^{m} 06, 15^{s} = 23^{h} 59^{m} 59, 25^{s} = 359,99688^{0}$

– перевели часовую меру угла в градусную.

По формуле (5.28) вычислим z_{π} :

 $z_{\pi} = \arccos z_{\pi} = 45,254242^{0} = 45^{0}15'15,2''.$

По формулам (5.24, 5.23, 5.22) вычислим $D_{_{\mathcal{I}}}\delta g_{\mathcal{I}} = 0,026$ мГал и $\delta g_{\mathcal{I}C} = 0,003$ мГал:

 $\delta g_{\mathcal{IC}} = 1,16(0,026 - 0,023) = 0,003$ мГал.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите иные способы определения вертикальной составляющей лунно-солнечных приливов.

2. Как необходимо спланировать гравиметрические измерения, чтобы свести к минимуму приливное влияние Луны и Солнца?

ЛАБОРАТОРНАЯ РАБОТА № 4

ОЦЕНКА ТОЧНОСТИ ГРАВИМЕТРИЧЕСКОЙ СВЯЗИ

ЦЕЛЬ РАБОТЫ: научиться выполнять оценку точности результатов измерений разности силы тяжести.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: к выполнению лабораторной работы следует приступить после изучения содержания работ: [28,§ 65], или из [39,§ 71], или [3, 5]. Исходные данные для выполнения лабораторной работы № 4 приведены в прил. 6. Номер варианта выбирается по последней цифре шифра. Цифра 0 соответствует варианту 10.

СОДЕРЖАНИЕ РАБОТЫ

Вычислить среднюю квадратическую погрешность оразности силы тяжести $\overline{\Delta g}_{nk}$, измеренную *n* приборами в *k* рейсах.

ОБЩИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

При измерениях разности силы тяжести гравиметрами оценку точности среднего значения выполняют следующим образом. Если разность силы тяжести определена *n* приборами в *k* рейсах (циклах), при этом $n \le 5$, а $k \le 2$, то необходимо применять формулу для вычисления средней квадратической погрешности одного измерения:

$$m_{\Delta g} = \pm \sqrt{\frac{\sum_{i=1, j=1}^{nk} \delta_{ij}^{2}}{nk - 1}}, \qquad (5.43)$$

где δ_{ij} – уклонение измеренного значения Δg_{ij} от Δg_{cp} (или $\overline{\Delta g}$);

 $n \mathbf{k}$ – число измерений Δg_{i_i} .

Среднюю квадратическую погрешность среднего значения $\overline{\Delta g}$ вычисляют по формуле:

$$M_{\Delta g} = \pm \sqrt{\frac{\sum_{i=1, j=1}^{nk} \delta_{ij}^{2}}{nk(nk-1)}} = \pm \frac{m_{\Delta g}}{\sqrt{nk}}.$$
(5.44)

Если разность силы тяжести определена n приборами (n > 5) в k рейсах (k > 2), то следует использовать формулы оценки точности групповых измерений [5, 17].

Измеренное значение разности силы тяжести можно представить в виде

$$\Delta g_{nk} = \Delta g + \sigma_1 + \sigma_2 + \sigma_3 + \xi, \qquad (5.45)$$

где Δg – истинное значение измеренной величины;

σ₁, σ₂, σ₃ и ξ – погрешности, влияющие на измеряемое значение разности силы тяжести: случайная, полусистематические первого и второго рода и систематическая соответственно.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Представим результаты измерений Δg , полученные *n* гравиметрами в *k* рейсах в виде табл. 5.7.

Гравиметры,		Рейсы, <i>j</i>			Δg_{io}	Уклонения от общего
i	1	2		K	среднее по всем рейсам	среднего, Δ _{i0}
1	Δg_{11}	Δg_{12}		Δg_{1k}	Δg_{10}	Δ_{10}
2	Δg_{21}	Δg 22		Δg_{2k}	Δg_{20}	Δ_{20}
n	Δg_{n1}	Δg_{n2}	•••	Δg_{nk}	Δg_{n0}	Δ_{i0}
Δg_{oj} – среднее по всем гравиметрам	Δg_{01}	Δg_{02}		Δg_{0k}	Δg_{00}	-
Уклонения от общего среднего, Δ_{oj}	Δ_{01}	Δ_{02}		Δ_{0k}	-	-

Таблица 5.7. Результаты измерений Δg_i

В табл. 5.7: замена индекса на нуль означает осреднение по этому индексу; $\Delta g_{11}, \Delta g_{21}, ..., \Delta g_{n1}$ – разности силы тяжести, полученные в первом рейсе гравиметрами от *i* = 1 до*n*;

 $\Delta g_{11}, \Delta g_{12}, ..., \Delta g_{1k}$ – разности силы тяжести, полученные одним прибором в рейсах от *j* = 1 до *k*;

 Δg_{io} – среднее значение Δg_i по одному прибору в k рейсах:

$$\Delta g_{io} = \frac{\sum_{j=1}^{k} \Delta g_i}{k}; \qquad (5.46)$$

 Δg_{oj} – среднее значение Δg_j по одному рейсу из *n* приборов:

$$\Delta g_{oj} = \frac{\sum_{i=1}^{n} \Delta g_j}{n}; \qquad (5.47)$$

 Δg_{00} – среднее значение Δg по результатам всех измерений:

$$\Delta g_{00} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{k} \Delta g_{ij}}{nk}.$$
(5.48)

Оценка точности определения Δg выполняется следующим образом:

а) Найдем среднюю квадратическую погрешность σ_n измерения Δg одним из приборов из k рейсов:

$$\sigma_n^2 = \frac{\sum_{i=1}^n \Delta_{i0}^2}{n-1},$$
(5.49)

где Δ_{i0} – уклонение Δg_{i0} от общего среднего Δg_{00} ,

$$\Delta_{i0} = \Delta g_{i0} - \Delta g_{00}; \tag{5.50}$$

б) Определим среднюю квадратическую погрешность σ_k измерения Δg_{0k} в одном рейсе *n* приборами:

$$\sigma_k^2 = \frac{\sum_{j=1}^k \Delta_{j0}^2}{k-1},$$
(5.51)

где Δ_{0i} – уклонение Δg_{0i} от общего среднего Δg_{00} ,

$$\Delta_{0\,i} = \Delta g_{0\,i} - \Delta g_{00}. \tag{5.52}$$

В первом случае исключены систематические и полусистематические погрешности второго рода, во втором – систематические и полусистематические погрешности первого рода;

в) Случайную погрешность σ₁ определяют следующим образом:

$$\sigma_{1}^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{k} (\Delta g_{ij} - \Delta g_{i0} - \Delta g_{0j} + \Delta g_{00})^{2}}{(n-1)(k-1)};$$
(5.53)

г) Далее определим полусистематическую погрешность первого рода:

$$\sigma_2^2 = \sigma_n^2 - \frac{\sigma_1^2}{k}$$
 – погрешность прибора. (5.54)

Определим погрешность второго рода:

$$\sigma_3^2 = \sigma_k^2 - \frac{\sigma_1^2}{n}$$
 – погрешность рейса; (5.55)

 д) Определим погрешность единичного измерения разности силы тяжести (без учета систематических погрешностей):

$$\sigma_{\Delta g}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} ; \qquad (5.56)$$

е) Определим среднюю квадратическую погрешность разности силы тяжести, измеренной *n* приборами в *k* рейсах по формуле:

$$\sigma_{\frac{\Delta g}{\Delta g}_{nk}}^{2} = \frac{\sigma_{1}^{2}}{nk} + \frac{\sigma_{2}^{2}}{n} + \frac{\sigma_{3}^{2}}{k}.$$
 (5.57)

Контроль вычислений можно провести по формуле:

$$\sigma \frac{2}{\Delta g_{nk}} = \frac{\sigma_n^2}{n} + \frac{\sigma_k^2}{k} - \frac{\sigma_1^2}{nk}.$$
 (5.58)

При ограниченном числе измерений возможны случаи «мнимых» ошибок ($\sigma_2^2 < 0$ или $\sigma_3^2 < 0$). Тогда точность гравиметрической связи можно оценить по формулам:

$$\sigma_{1}^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{k} (\Delta g_{ij} - \Delta g_{00})^{2}}{nk - 1}, \qquad (5.59)$$

$$\sigma_{2}^{2} = 0, \quad \sigma_{3}^{2} = 0, \quad \sigma_{\Delta g_{nk}}^{2} = \frac{\sigma_{1}^{2}}{nk}.$$

Может оказаться «мнимой» полусистематическая погрешность рейса ($\sigma_3^2 < 0$, но $\sigma_2^2 > 0$), тогда точность гравиметрической связи следует оценивать по формулам:

$$\sigma_{1}^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{k} (\Delta g_{ij} - \Delta g_{i0})^{2}}{n(k-1)},$$
(5.60)

$$\sigma_{2}^{2} = \sigma_{n}^{2} - \frac{\sigma_{1}^{2}}{n}; \quad \sigma_{3}^{2} = 0; \quad \sigma^{2} = \frac{\sigma_{1}^{2}}{nk} + \frac{\sigma_{2}^{2}}{n}.$$
Mower oragation (5.60)

Может оказаться «мнимой» полусистематическая погрешность прибора ($\sigma_2^2 < 0$, но $\sigma_3^2 > 0$), тогда точность гравиметрической связи следует оценивать по формулам:

$$\sigma_{1}^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{k} (\Delta g_{ij} - \Delta g_{oj})^{2}}{k(n-1)};$$
(5.61)
$$\sigma_{2}^{2} = 0; \quad \sigma_{3}^{2} = \sigma_{k}^{2} - \frac{\sigma_{1}^{2}}{n}; \quad \sigma^{2} = \frac{\sigma_{1}^{2}}{nk} + \frac{\sigma_{3}^{2}}{k}.$$

Пример оценки точности гравиметрической связи

Приращение силы тяжести между двумя пунктами измерено тремя гравиметрами в восьми рейсах (*n* = 3, *k* = 8) (табл. 5.8).

k	1	2	3	4	5	6	7	8	Δg_{i0}	Δ_{i0}
11	240.04	249.70	249 60	240.07	248.02	240 77	248.00	240.02	240.04	0.02
	248,84	248,70	248,09	249,07	248,92	248,77	248,90	248,83	248,84	-0,02
2	248,90	249,05	248,83	249,10	248,87	248,88	248,76	248,91	248,91	0,05
3	248,83	249,00	248,68	248,97	248,69	248,79	248,76	248,88	248,82	-0,04
$\Delta g_{0 j}$	248,86	248,92	248,73	249,05	248,83	248,81	248,80	248,87	248,86	—
Δ_{0j}	0,00	0,06	-0,13	0,19	-0,03	-0,05	-0,06	0,01	_	_

Таблица 5.8. Результаты обработки Δg

1. По формулам (5.46), (5.47) и (5.48) выполняем осреднение Δg_{nk} по строкам (Δg_{i0}) и по столбцам (Δg_{0j}) , а затем находим общее среднее из всех значений Δg_{nk} (Δg_{00}), равное 248,86. Контроль вычислений – среднее значение $\overline{\Delta g}_{0j}$ и $\overline{\Delta g}_{i0}$ из средних Δg_{0j} и Δg_{i0} должно быть равно Δg_{00} , т. е.

 $\overline{\Delta g}_{0 j} = \overline{\Delta g}_{0 0} = \overline{\Delta g}_{i 0},$ где

$$\overline{\Delta g}_{0j} = \frac{\sum_{j=1}^{k} \Delta g_{0j}}{k}, \ \overline{\Delta g}_{i0} = \frac{\sum_{i=1}^{n} \Delta g_{i0}}{n}.$$
 (5.62)

2. По формулам (5.47) и (5.49) определяем уклонения Δg_{i0} и Δg_{0j} от общего среднего Δg_{00} : Δ_{i0} и $\Delta_{0,i}$ соответственно.

3. По формулам (5.49) и (5.51) вычисляем средние квадратические погрешности измерения Δg_{n0} одним прибором в k рейсах и Δg_{0k} в одном рейсе n приборами: σ_n и σ_k соответственно:

 $\sigma_n = 0,047$ мГал, $\sigma_k = 0,095$ мГал.

4. По формуле (5.53) вычисляем случайную погрешность σ₁ гравиметрической связи, равную 0,091 мГал.

5. По формулам (5.54), (5.55) вычисляем полусистематические погрешности первого рода $\sigma_2 = 0,034$ мГал (погрешность прибора) и полусистематическую погрешность второго рода $\sigma_3 = 0,079$ мГал (погрешность рейса).

6. Средние квадратические погрешности единичного измерения Δg (без учета систематических погрешностей) и среднего значения $\overline{\Delta g}$, измеренного *n* приборами в *k* рейсах, вычисляем по формуле (5.56) и (5.57) соответственно:

 $\sigma_{\Delta g} = 0,125$ мГал, $\sigma_{\overline{\Delta g}} = 0,039$ мГал.

7. Контрольное значение $\sigma_{\overline{\Delta g}}$, вычисленное по формуле (5.58), равно 0,039 мГал.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте характеристику погрешностей при определении Δ*g* из многократных измерений.

2. Что необходимо соблюдать при выполнении гравиметрических измерений в рейсе, чтобы уменьшить влияние погрешностей?

3. Кто автор методики оценки точности гравиметрической связи при многократных измерениях с гравиметром?

4. Где и как могут быть использованы погрешности σ_1 , σ_2 и σ_3 ?

ЛАБОРАТОРНАЯ РАБОТА № 5

ВЫЧИСЛЕНИЕ АНОМАЛИЙ СИЛЫ ТЯЖЕСТИ С РЕДУКЦИЯМИ БУГЕ И В СВОБОДНОМ ВОЗДУХЕ

ЦЕЛЬ РАБОТЫ: ознакомиться с методикой вычисления гравитационных аномалий и получить представление об их величине в различных регионах и морфоструктурах земного шара.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: к выполнению задания следует приступить после изучения соответствующих разделов по теме в изданиях [26, 25, 37, 15, 16, 6, 32, 27]. Исходные данные для выполнения лабораторной работы № 5 приведены в прил. 6.

Номер варианта соответствует двум последним цифрам номера зачетной книжки.

СОДЕРЖАНИЕ РАБОТЫ

Вычислить аномалии силы тяжести в свободном воздухе и Буге для точек, расположенных:

- 1. На поверхности Земли в равнинном районе;
- 2. На поверхности Земли в горном районе;
- 3. На поверхности моря;
- 4. На дне моря;
- 5. Над Землей;
- 6. В скважине.

ОБЩИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Гравитационной аномалией силы тяжести называется разность между измеренными *g* и нормальными γ значениями силы тяжести в данной точке, расположенной на физической поверхности Земли или ниже (выше):

 $\Delta g = g - \gamma. \tag{5.63}$

В гравиметрии широкое распространение получили аномалии в свободном воздухе и Буге:

$$\Delta g_{c_{6.6.}} = g - (\gamma_0 + \delta g_1); \qquad (5.64)$$

$$\Delta g_E = g - (\gamma_0 + \delta g_1 + \delta g_2), \qquad (5.65)$$

где δg_1 – поправка за высоту точки H^{γ} над уровнем моря, мГал,

 $\delta g_1 = -0,30855 (1+0,00071 \cos 2B) H^{\gamma}, \qquad (5.66)$

где *Н*^{*ү*} – нормальная высота точки, м;

γ₀ – нормальное значение силы тяжести на поверхности эллипсоида [14],

 $\gamma_0 = 978\ 030\ (1+5,302\cdot10^{-3}\ \sin^2\ B-7\cdot10^{-6}\ \sin^2\ 2\ B)-14\ MГал,$ (5.67) где *B* – геодезическая широта места наблюдения.

Значения γ_0 , уменьшенные на 14 мГал, можно выбрать из прил. 8.

В формуле (5.65) δg_2 – поправка, учитывающая влияние масс, заключенных между уровнем точки наблюдения и поверхностью эллипсоида, представляемых, в равнинных районах, плоскопараллельным слоем толщиной H^{γ} . В горных районах массы, расположенные между эллипсоидом и физической поверхностью Земли, аппроксимируются промежуточным слоем [16].

Ее значение вычисляется по формуле:

 $\delta g_2 = -2\pi f \overline{\rho} \cdot H^{\gamma} \cdot 10^5$ (мГал),

л), (5.68)

где f – гравитационная постоянная, равная 6,67 · 10⁻⁸ см³ / (г · c²);

 $\pi = 3,1416;$

 $\overline{\rho} = 2,67$ г/см³ (средняя плотность пород промежуточного слоя).

Если сила тяжести измерена на дне моря или на глубине h_{M} под его поверхностью, то для получения гравитационной аномалии необходимо ввести поправку за глубину и за притяжения водного слоя между уровнем моря и точкой наблюдения.

Влияние притяжения водного слоя над точкой наблюдения на силу тяжести равно двойной величине притяжения этого слоя, так как слой, находясь сверху, уменьшает силу тяжести, а, находясь внизу, когда точка наблюдения перенесена на уровень моря, увеличивает ее на ту же величину δg_3 , которую можно определить по формуле:

 $\delta g_3 = -2 \cdot 2\pi f \overline{\rho}_M \cdot h_M \cdot 10^5 \text{ (мГал)}, \tag{5.69}$

где $\overline{\rho}_{_{M}}$ – средняя плотность морской воды, равная 1,03 г/см³;

 $h_{\scriptscriptstyle M}$ – глубина от поверхности моря до точки наблюдения (отрицательная), м.

Аналогичные рассуждения справедливы и для случаев изменения g в скважинах и в шахтах с той лишь разницей, что в качестве $\overline{\rho}$ нужно брать среднюю плотность горных пород, заключенных в слое толщиной h_c над точкой наблюдения.

Вычисление аномалий силы тяжести с редукцией в свободный воздух Для точек 1 и 2, расположенных на поверхности Земли:

 $\Delta g_{c66} = g - (\gamma_0 + \delta g_1).$ (5.70)

Точка 3 находится на поверхности моря, где $H^{\gamma} = 0$. Поэтому, согласно теории М.С. Молоденского [21], в первом приближении имеем:

 $\Delta g_{c_{\theta,\theta}} = g - \gamma_0 . \tag{5.71}$

Если сила тяжести измерена на дне моря (точка 4) на глубине h_{M} , то для получения аномалии $\Delta g_{cs.e.}$ необходимо применить формулу:

 $\Delta g_{c_{6.6.}} = g - (\gamma_0 + \delta g_1) + \delta g_3.$ (5.72)

Следует помнить, что при вычислении поправки δg_1 необходимо вместо H^{γ} брать отрицательную величину h_M .
Для точки 5 высота складывается из нормальной высоты H^{γ} и высоты полета летательного аппарата h_{Π} над физической поверхностью Земли, т. е.

 $H = H^{\gamma} + h_{\Pi}. \tag{5.73}$

Аномалия $\Delta g_{c.6.6.}$ для этой точки определяется по формуле (5.8), в которой при вычислении δg_1 вместо H^{γ} необходимо брать величину H, полученную по формуле (5.73).

Аномалия силы тяжести для точки 6, расположенной в скважине на глубине h_c от поверхности Земли, вычисляется по формуле (5.72). В этом случае, при вычислении поправки δg_1 , необходимо брать высоту:

 $H = H^{\gamma} - h_c. \tag{5.74}$

При вычислении поправки δg_3 величину $\overline{\rho}$ следует принимать равной средней плотности горных пород в слое, над точкой наблюдения, толщиной h_c . Глубина h_c – величина отрицательная. Пример вычисления $\Delta g_{c6.6.}$ приведен в табл. 5.9.

Номера	$B,^{\scriptscriptstyle 0}$ '	H^{γ}	<i>h</i> _к **,м	$(H^{\gamma} + h)$	<i>g</i> ,мГал	γ ₀ ,мГал	δg_1 ,	γ,мГал	δg_3 ,	$\Delta g_{cb.b.}$,
точек		,М		,М		Ŭ	мГал		мГал	мГал
1	52 13	5	0	5	981 274,8	981 248,6	-1,5	981 247,4		27,7
2	36 48	384	0	384	979 851,0	979 870,4	-118,5	979 751,9	-	99,1
3	4 22	0	0	0	978 072,8	978 045,9	0	979 045,9		26,9
4	25 45	0	-125	-125	979 069,3	978 990,5	38,6	979 029,1	10,8	51,0
5	67 17	143	500	643	982 192,2	982 424,7	-198,2	982 226,3		-34,3
6	48 50	125	-40	85	980 924,7	980 947,9	-26,2	980 921,4	8,9*	-12,5

Таблица 5.9. Пример вычисления $\Delta g_{cb,b}$.

^{*} поправка δg_3 вычислена с плотностью $\overline{\rho}_n = 2,67$ г/см³.

** h_{κ} – высоты точек над или под поверхностями Земли или моря.

Вычисление аномалий силы тяжести в редукции Буге

При вычислении аномалий Буге следует различать два случая:

1. Точка наблюдения расположена на суше;

2. Точка наблюдения расположена на море.

В первом случае для точек 1, 2, 5, 6, расположенных на суше, аномалия Буге вычисляется по формуле:

$$\Delta g_{E} = \Delta g_{c_{6.6.}} + \delta g_{2} . \qquad (5.75)$$

Для точек 3 и 4, расположенных на море, поправка за влияние промежуточного слоя вычисляется по формуле:

 $\delta g_2 = -2\pi f\left(\overline{\rho} - \overline{\rho}_M\right) \cdot h_M. \tag{5.76}$

Аномалия Буге в этом случае вычисляется по формулам (5.75) с учетом δg_2 , вычисленной по формуле (5.76). Пример вычисления Δg_B приведен в табл. 5.10.

Таблица 5.10. Пример вычисления	Δg_{E}
---------------------------------	----------------

Номерато чек	H^{γ} , M	$h_{,\mathrm{M}}$	$\Delta g_{_{\mathit{CG.G.}}}$,мГал	δg_{2} , мГал	Δg $_{B}$,мГал
1	5	0	27,7	-0,6	27,1
2	384	0	99,1	-43,0	56,1
3	0	-3 820	26,9	262,4	289,3
4	0	-125	51,0	8,6	59,6
5	143	500	-34,3	-16,0	-50,3
6	125	-40	12,5	-14,0	-1,5

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Объясните понятия «смешанная аномалия» и «чистая аномалия».
- 2. Раскройте смысл понятия «редукция»?
- 3. Объясните физический смысл редукций Буге и в свободном воздухе.

4. Как называется коэффициент перед H^{γ} в формуле (5.66) и чему он равен для эллипсоида?

5. Как изменяется сила тяжести на поверхности эллипсоида и вне его?

ЛАБОРАТОРНАЯ РАБОТА № 6

ПОСТРОЕНИЕ ГРАВИМЕТРИЧЕСКИХ КАРТ АНОМАЛИЙ СИЛЫ ТЯЖЕСТИ С РЕДУКЦИЯМИ БУГЕ И В СВОБОДНОМ ВОЗДУХЕ

ЦЕЛЬ РАБОТЫ: освоение методики построения гравиметрических карт аномалий силы тяжести с редукциями в свободном воздухе и Буге.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: к выполнению работы приступить после изучения работ [28, гл. VI, § 47, 49, 50, 54], [27, гл. 2, 3], [14]. Исходные данные для выполнения лабораторной работы приведены в прил. 9.

СОДЕРЖАНИЕ РАБОТЫ

Для 25 гравиметрических пунктов, расположенных по трапеции $2^{\circ} \times 2^{\circ}$ через 30' по широте и долготе, вычислить аномалии силы тяжести с редукцией в свободном воздухе и Буге. Построить гравиметрические карты аномалий силы тяжести в масштабе 1 : 1 000 000 с сечением изоаномал 10 мГал.

ОБЩИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Гравитационной аномалией силы тяжести называется разность между измеренными *g* и нормальными *γ* значениями силы тяжести в данной точке:

 $\Delta g = g - \gamma = g_0 - \gamma_0 , \qquad (5.77)$

где g₀ – редуцированное значение силы тяжести с физической поверхности Земли к соответствующей точке на поверхности геоида,

γ₀ – нормальное значение силы тяжести на поверхности эллипсоида [15].

Это значение вычисляется по формуле:

 $\gamma_0 = 978030 (1+5, 302 \cdot 10^{-3} \sin^2 \phi - 7 \cdot 10^{-6} \sin^2 2 \phi) - 14 \text{ мГал}, (5.78)$

где ϕ – широта места наблюдения.

В гравиметрии широкое распространение получили аномалии:

1. В свободном воздухе:

$$\Delta g_{ce.} = g - (\gamma_0 + \delta g_1);$$
 (5.79)

2. Аномалия Буге:

 $\Delta g_{\,B} = g - (\gamma_0 + \delta g_1) + \delta g_2 , \qquad (5.80)$

где δg_1 – поправка за высоту точки H^{γ} над уровнем моря, мГал. Вычисляется по формуле:

$$\delta g_1 = -0,30855(1+0,00071\cos 2\varphi) H^{\gamma}; \qquad (5.81)$$

 δg_2 – поправка, учитывающая влияние масс, заключенных между уровнем точки наблюдения и поверхностью геоида – промежуточный плоскопараллельный слой толщиной H^{γ} .

Определяется, как $\delta g_2 = -0,0419\overline{\rho} H^{\gamma}$, (5.82)

где $\overline{\rho}$ – средняя плотность пород промежуточного слоя, принята равной 2,67 г/м 3 .

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Вычислить нормальные значения силы тяжести на поверхности эллипсоида по формуле (5.78).

2. Вычислить аномалии силы тяжести с редукцией в свободном воздухе по формуле (5.79).

3. Вычислить аномалии силы тяжести с редукцией Буге по формуле (5.80).

4. Построить гравиметрическую карту аномалий силы тяжести в масштабе 1:1 000 000 с сечением изоаномал через 10 мГал.

Пример выполнения работы

Результаты вычисления аномалий силы тяжести с редукциями Буге и в свободном воздухе приведены в табл. 5.11–5.14.

			-	-		-
φ	λ	103,0°	103,5°	104 , 0°	104,5°	105,0°
44,0°	8	980 301,5	980 312,4	980 292,9	980 289,1	980 231,0
	H^{γ}	630	600	750	820	1 080
43,5°	8	980 219,9	980 217,0	980 203,5	980 205,5	980 175,0
	H^{γ}	800	850	1 000	1 000	1 130
43,0°	8	980 174,1	980 141,4	980 131,6	980 113,8	980 093,0
	H^{γ}	930	1 010	1 070	1 150	1 200
42,5°	8	980 116,2	980091,4	980 076,6	980 031,2	980 016,8
	H^{γ}	1 000	1 030	1 100	1 190	1 240
42,0°	8	980 056,2	980 032,6	980 020,7	979 990,0	979 957,3
	H^{γ}	980	1 090	1 130	1 220	1 310

Таблица 5.11. Исходные данные варианта № 1

Таблица 5.12. Нормальные значения силы тяжести на поверхности эллипсои
--

φ	42,0°	42,5°	43,0°	43,5°	44,0°
γ, мГал	980 511,4	980 465,2	980 421,1	980 376,0	980 331,0

Таблица 5.13.	Результаты	вычислений	аномалий	силы	тяжести	с редун	сцией в
					свобс	дном в	юздухе

φ	103,0°	103,5°	104,0°	104,5°	105,5°
44,0°	52,9	83,1	126,0	56,0	46,5
43,5°	57,6	91,6	61,2	22,2	29,8
43,0°	42,3	57,0	95,9	58,5	22,1
42,5°	22,8	19,5	21,8	76,9	42,3
42,0°	30,7	20,7	12,1	6,7	32,6

Таблица 5.14. Результаты вычислений аномалий силы тяжести в редукции Буге

\$	103,0°	103,5°	104,0°	104,5°	105,5°
44,0°	-67,9	-85,9	-97,8	-102,9	-118,0
43,5°	-68,8	-72,9	-80,9	-128,9	-138,1
43,0°	-92,0	-82,9	-66,4	-106,0	-148,0
42,5°	-116,0	-126,0	-126,0	-91,0	-120,0
42,0°	-115,9	-135,9	-147,9	-149,9	-133,0

Построение гравиметрической карты аномалий силы тяжести масштаба 1 : 1 000 000 с сечением изоаномал через 10 мГал с помощью пакета SURFER и CorelDraw.

- 1. Запускаем Surfer.
- 2. Создаем новую таблицу New worksheet. Заполняем ее.

3. В верхнем меню выбираем Grid→Data.

เหลือและเหมือนสองสีเหลือเสียงสีเหลือเสียงสี ปี Open Cata	ու Յուս հայնում հայ հայնումիչը անհայնումին անհայներ	อะไร้อะโละได้อะไม่ได้ปองไร้ไปออะไร้แปรนให้แปล
Force: Stafe 3 Pre: Apple 4: Oracle 2: Oracle 2: Stafe 4: Conclusion Stafe 4: Stafe 3: Stafe 4: Conclusion Stafe 4: Stafe 4: Stafe 4: Stafe 4: <th>C 2 C Conten</th> <th></th>	C 2 C Conten	
	Consolution Cons	Open Child Open Open

- 4. В появившемся окне нажимаем Sheet2.
- 5. Ставимв X Column B, a Y Column A.

jea Manager DIX 4 Plats Sheet2"		<u>8</u>
ng kuch dha dha dha dha dha dha dha dha dha dh	Gord Data Gord Data	aluzita do foto de la defensión

6. Появляется еще одно окно, в строке output grid fail справа нажимаем на папку и выбираем место, где будет сохранен файл.

7. Нажимаем ОК, дальше появляется report (отчет).

22388 148 1 P 2	
\$ * * * * * * * * © ⊠⊡∎∎ <mark>#</mark> ***∎.	
roger <u>9</u> X 4 Parts Sheet?)	n na lava na 5 mana 5 mana 2 mana 20 mana 20 mana 22 mana 25 mana 24 mana
Surfer-Report	
for for	
Gridding Report	
99-149 - 20-10-022-010-1	
Mon Mar 01 12 19 49 2010	
Elasped time for gridding — 0.03 seconds	
Data Causas	
Data Source	
Source Data File Name	
Y Columo A	
Z Column C	
Data Counts	
Active Data: 25	
Original Data: 25	
Excluded Data 0	
Deleted Duplicates: D Retrieved Duplicates: D	
Artificial Data: 0	
Superseded Data: 0	

8. Теперь нажимаем File→Open выбираем недавно сохраненный нами файл.

9. Нажимаем правой кнопкой мыши по рисунку и убираем галочку с Show nodes.

10. Получаем схему изолиний.

- 11. Делаем Print Screen.
- 12. Открываем Paint и вставляем наш рисунок.
- 13. С помощью Paint оставляем только карту аномалий с рамкой.
- 14. Сохраняем этот рисунок в формате JPEG.
- 15. Открываем CorelDraw.
- 16. Импортируем наш рисунок (Файл →Импорт).
- 17. Вставляем на лист наш рисунок.

18. Далее векторизуем его (Растровые изображения → трассировка по центральной линии → технические иллюстрации), настройки оставляем по умолчанию и нажимаем Ок.

19. Выделяем изображение и меняем его размеры по ширине – 160 по высоте – 200 (размеры меняются под строкой меню).

20. Строим внешнюю рамку карты. Делаем отступ от границы рисунка (карты) 0,8 см, проводим линии по долготе и по широте. Толщина линии внешней рамки должна быть 1 мм.

21. Создаем координатную сетку. Координатная сетка должна выходить за пределы рисунка (самой карты), но не заходить за пределы рамки. Координатная сетка имеет размеры 4,5 см по широте, 3,5 см по долготе.

Далее необходимо выполнить подписи изоаномал. Подписывать нужно каждую пятую изолинию, а также те, которые остались обособленными по краям карты.

В данной работе подписи изоаномал выполнены с помощью программы Paint (стандартная программа Windos, достаточно проста в обращении).

В программе Paint набираем нужную нам подпись (например, число «75»). Выбираем подходящий шрифт для дальнейшего перенесения этой подписи в программу Corel Draw. Уменьшаем картинку до необходимых для карты размеров.

Сохраняем рисунок.

Сохраненный рисунок копируем в программу Word, обрезаем его до минимальных размеров, т. е. до размеров подписи.

Теперь подпись можно поворачивать под любым углом(так как это рисунок), против или по часовой стрелке.

Этот рисунок, уже под нужным нам углом и с нужной подписью помещаем на соответствующую изоаномалу.

На рис. 5.6 представлен конечный «продукт» – гравиметрическая карта аномалий силы тяжести с редукции Буге в необходимом оформлении.

Изоаномалы проведены через 10 мГал.

Выполнил: ст. гр. ПГ-41 В.П. Барткус

Проверил: В.И. Кузьмин

Рис. 5.6. Гравиметрическая карта аномалий силы тяжести с редукцией Буге

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Определение силы тяжести. Размерность силы тяжести в СИ. Чему равен 1 мГал в СИ?

- 2. Распределение силы тяжести на поверхности эллипсоида.
- 3. Аномалии силы тяжести.
- 4. Редукции силы тяжести, их физический смысл и формулы.
- 5. Гравиметрические карты. Их назначение и сферы применения.

ЛАБОРАТОРНАЯ РАБОТА № 7

ВЫЧИСЛЕНИЕ СОСТАВЛЯЮЩИХ УКЛОНЕНИЯ ОТВЕСА В ПЛОСКОСТИ МЕРИДИАНА (ξ), ПЕРВОГО ВЕРТИКАЛА (η) И ВЫСОТЫ КВАЗИГЕОИДА (ζ)

ЦЕЛЬ РАБОТЫ:освоить методику вычисления составляющих уклонения отвеса и высоты квазигеоида по гравиметрическим данным.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: необходимо изучить работы [23, гл. XI, §64–69] или [12, гл. 13, §1–8], а также подразд. 1.4 настоящего пособия.

Исходным материалом для выполнения работы является гравиметрическая карта аномалий силы тяжести с редукцией в свободном воздухе (Δg_{ce}) в масштабе 1 : 1 000 000, палетка № 1 (прил. 10, рис. П.10.1) и вычислительные схемы, которые приведены в прил. 11, табл. П.11.1 и П.11.2.

Для студентов очной формы обучения номер варианта задания соответствует порядковому номеру его фамилии в журнале учебной работы преподавателя. Студенты-заочники данную лабораторную работу выполняют во время сессии на практических занятиях, номер варианта указывается преподавателем.

СОДЕРЖАНИЕ РАБОТЫ

Для пункта (М) с координатами $\phi_0=43^{\circ}00'$ и $\lambda_0=69^{\circ}00'$ вычислить составляющие уклонения отвеса ξ'' , η'' и высоту квазигеоида ($\zeta_{\rm M}$). Размер учитываемой области равен 100 км.

ОБЩИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Методика вычисления уклонений отвеса и высот квазигеоида

Для вычисления ξ , η и ζ используют гравиметрические карты аномалий силы тяжести Δg с редукцией в свободном воздухе. Учитываемую область – круг с радиусом (в данном примере) 100 км, разбивают концентрическими окружностями и радиусами, проведенными из центра круга, на площадки (ячейки), оказывающие равное влияние на точку вычисления.

Получившаяся сетка из окружностей и линий называется *палеткой*. Области палетки, заключенные между двумя окружностями называются *зонами*, они обозначаются римскими цифрами, а между двумя радиусами – *секторами*, которые нумеруются арабскими цифрами.

Образец палетки и гравиметрическая карта Δg_{CB} представлены в прил. 10.

Учитываемую область разбивают на две зоны: центральную, от 0 до r_0 , и внешнюю – от r_0 до r_i . В практике вычислений уклонений отвеса радиус центральной зоны r_0 принят равным 5 км, а внешней, в данном случае, от 5 до 100 км. В центральной зоне вычисления проводят по формулам:

$$\begin{cases} \boldsymbol{\xi}'' \\ \boldsymbol{\eta}'' \end{cases} = -\frac{\boldsymbol{\rho}''}{8\gamma} \sum_{k=1}^{k=m} \Delta g_k (r_0) \begin{cases} \cos A_k \\ \sin A_k \end{cases} \\ \boldsymbol{\xi}_0 = \frac{r_0}{2\gamma} \Delta g_0 + \frac{r_0}{2m\gamma} \sum_{k=1}^{k=m} \Delta g \end{cases}$$
(5.83)

где m = 8 – число секторов, номера которых: 2, 4, 6, 8, 10, 12, 14, 16; Δg_k – значения Δg_{CB} в точках секторов на окружности r_0 ;

$$A_k = \frac{\kappa \cdot \pi}{4}$$
 – азимуты точек в секторах на окружности r_0 ;

k – порядковый номер сектора (1, 2, 3,..., *m*);

ү – нормальное значение силы тяжести, равно 981 000 мГал,

 Δg_0 – значение аномалии силы тяжести в точке вычисления.

Для секторов 4, 8, 12, 16 с азимутами $A_k = (0^\circ, 90^\circ, 180^\circ, 270^\circ)$ вычисления ξ_0'' и η_0'' производят по формулам:

$$\begin{cases} \xi_0'' \\ \eta_0'' \end{cases} = C_1 \cdot \sum_{k=1}^4 \left(\Delta g_k \cdot \begin{cases} \cos A_k \\ \sin A_k \end{cases} \right), \tag{5.84}$$

rge $C_1 = \frac{\rho''}{8\gamma} = 0,0263.$

А для секторов 2, 6, 10, 14 с азимутами $A_k = (45^\circ, 135^\circ, 225^\circ, 315^\circ) - по формулам:$

$$\begin{cases} \xi_0'' \\ \eta_0'' \end{cases} = C_2 \cdot \sum_{k=1}^4 \left(\Delta g_k \cdot \begin{cases} \cos A_k \\ \sin A_k \end{cases} \right), \tag{5.85}$$

rge $C_2 = C_1 \cdot \sin A_1 = 0,0263 \cdot 0,707107 = 0,0186.$

Высота квазигеоида ζ_0 вычисляется по формуле:

$$\zeta_0 = \frac{r_0}{2\gamma} \cdot \Delta g_0 + \frac{r_0}{2m\gamma} \sum_{k=1}^{k=m} \Delta g_k = 0,00255 \cdot \Delta g_0 + 0,00032 \sum_{k=1}^{k} \Delta g_k . \quad (5.86)$$

В радиусе от 5 до 100 км составляющие уклонения отвеса определяются по формулам:

$$\begin{cases} \xi'' \\ \eta'' \end{cases}_{5-100} = -\frac{1}{2\pi R} \int_{r_0=5}^{r=1002\pi} \int_{0}^{\pi} \Delta g \, Q_1 \, \begin{cases} \cos A \\ \sin A \end{cases} dA \cdot dr \,, \tag{5.87}$$

где Q_1 вычисляется по формуле (1.43).

Учитываемая область разбивается на 16 секторов и 8 кольцевых зон – на площадки равного влияния, которое в этой зоне принято равным 0,"005. Размер сектора (при n=16) равен 22,5°.

Радиусы окружностей, отрезающих в секторе площадки равного влияния, вычисляются по формуле

$$l_{n}r_{k} = l_{n}r_{k-1} + \frac{B}{2A}r_{k-1}^{2} + \frac{C}{A}r_{k-1} - \frac{B}{2A}r_{k}^{2} - \frac{C}{A}r_{k} + \frac{P}{A}.$$
 (5.88)

Обозначим

$$F(r) = A \cdot \ln r + \frac{B}{2}r^{2} + C \cdot r, \qquad (5.89)$$

тогда

$$P_{1} = F(r_{1}) - F(r_{0}); \qquad (5.90)$$

$$\frac{P_{1} \cdot \rho''}{16R} = 0,005''. \qquad (5.91)$$

С учетом формул 5.88–5.91 выражение (5.87) примет вид:

$$\begin{cases} \xi'' \\ \eta'' \end{cases}_{5-100} = 0,005'' \sum_{k=1}^{16} \sum_{i=I}^{VIII} \Delta g_i^k \begin{cases} \cos A_i \\ \sin A_i \end{cases}.$$
(5.92)

Для вычисления высот квазигеоида в радиусе от 5 до 100 км используют выражение

$$\left(\zeta_{5-100}\right)_{M} = \frac{1}{2\pi\gamma} \int_{r_{0}=5}^{r=1002\pi} \int_{0}^{\pi} \Delta g \cdot F(r) \cdot dr \cdot dA.$$
(5.93)

С численными коэффициентами формула (5.93) имеет вид:

$$\left(\zeta_{5-100}\right)_{M} = \left(15 \cdot \sum_{1}^{16} \Delta g_{II} + 22 \sum_{1}^{16} \Delta g_{III} + 32 \sum_{1}^{16} \Delta g_{III} + 47 \sum_{1}^{16} \Delta g_{IV} + 69 \sum_{1}^{16} \Delta g_{VI} + 101 \sum_{1}^{16} \Delta g_{VI} + 149 \sum_{1}^{16} \Delta g_{VII} + \sum_{1}^{16} \Delta g_{VIII} \right) \cdot 10^{-5}.$$

$$(5.94)$$

Порядок действий при вычислении составляющих уклонений отвеса ξ", η " и высоты квазигеоида ζ в радиусе 0–100 км

Для выполнения работы используется гравиметровая карта аномалий силы тяжести с редукцией в свободном воздухе, построенная в масштабе 1 : 1 000 000, палетка, изготовленная на прозрачной основе – целлулоиде, бланки вычислений. Образцы карты, палетки, бланков приведены в прил. 10, 11.

Для выполнения математических операций необходим микрокалькулятор или иное вычислительное средство.

1. Сначала вычисляем значения составляющих ξ,η и ζ в центральной зоне (пример вычисления в прил. 12, схемы № 4 и № 6).

2. Центр палетки совмещаем с пунктом, для которого определяются ξ,η и ζ так, чтобы линия NS была параллельна меридиану.

3. Снимаем значения Δg_0 в центральной точке и Δg_i в точках, расположенных на середине дуг секторов 2, 4, 6, 8, 10, 12, 14, 16 и записываем их в соответствующие графы схемы № 4 прил.12 строки «О». Значение Δg_0 записываем в схему № 6 (прил. 12) и умножаем на $C_4 = 0,00255$.

4. Каждое снятое значение Δg_i в секторах 2, 6, 10, 14 умножаем на свой верхний знак (для ξ). Знак «+» или «-» складывается из знака аргумента тригонометрической функции и знака, стоящего перед слагаемыми формул (5.83), (5.87). Получаем «новые» значения Δg .

5. Находим сумму «новых» значений Δg в этих секторах и записываем её в строку Σ_1 (прил. 12, схема № 4, графа сектора 2).

6. Умножаем Σ_1 на коэффициент $C_1 = 0,0186$ и записываем произведение для ξ_1 в графу сектора 14 (прил. 12, схема 1).

7. Каждое снятое значение Δg в секторах 2, 6, 10, 14 умножаем на свой нижний знак (для η).

8. Сумму новых значений Δg записываем в строку Σ_2 (графа сектора 2, прил. 12, схема 1).

9. Умножаем Σ_2 на коэффициент $C_1 = 0,0186$ и записываем произведение для η , в графу сектора 14.

10. Аналогичные действия выполняем со значениями Δg , снятыми в секторах 16, 8, 4, 12.

11. В секторы, в которых нет знаков, записываем нули. Естественно, при умножении Δg на нуль произведение будет равно нулю.

12. В результате выполнения всех действий получим значения ξ_2 и η_2 , которые находятся в графе сектора 12.

13. Значения ξ_1 и ξ_2 , а также η_1 и η_2 , складываем и записываем в строки зон ξ_{0-5} и η_{0-5} схемы № 5 (прил. 12):

(5.95)

 $\xi_{0-5} = \xi_1 + \xi_2 ;$

 $\eta_{\,0-5} \,= \eta_1 \,+ \eta_2 \,\,.$

14. Суммируем все значения Δg в строке «О» и запишем результат в графу Σ_3 .

15. Сумму умножаем на коэффициент $C_3 = 0,00032$ и записываем произведение в строку для ζ_{0-5} .

16. Значения $\xi_{0.5}$ и η_{0-5} переносим в соответствующие графы и строки таблицы №5, а ζ_0 и ζ_{0-5} в табл. № 6. Вычислив значения ξ , η и ζ для центральной зоны, приступаем к аналогичным действиям в области 5–100 км. Пример вычислений приведен в схеме № 1 (прил. 12).

17. Проверив положение палетки на карте, начинаем заполнять схему № 1 (прил. 12).

В этой схеме в первой графе слева записаны римскими цифрами номера зон отi = I до VIII. В верхней строке схемы арабскими цифрами пронумерованы секторы от k = 0 до 16. Причем нумерация секторов идет не по порядку. На это следует обращать внимание при снятии значений Δg .

Секторы разделены на четыре группы: первую группу составляют секторы 1, 7, 9, 15; вторую – 2, 6, 10, 14; третью – 3, 5, 11, 13; четвертую – 16, 8, 4, 12. Секторы подобраны так, что каждой группе соответствует свой угол: в первой группе – 22,5°, во второй – 45,0°, в третьей – 67,5°, в четвертой: в 16 секторе – 360° , в 8 – 180° , в 4 – 90° и в 5 – 270° .

18. Схему начинаем заполнять с первого сектора, записывая снятые значения Δg в зоны I-VIII. Далее переходим к седьмому сектору, затем к 9 и т. д. согласно нумерации секторов.

19. Заполнив таблицу, подсчитываем суммы Δg_i в каждом секторе (по столбцам) и записываем их в строку Σ_1 .

20. Суммируем значения Δg по каждой зоне (по строкам) и записываем их в графу Σ_3 .

21. Суммируем значения сумм по секторам (по всей строке Σ_0) и значения сумм по зонам (по столбцу Σ_3). Суммы по строке и по столбцу должны быть равными:

 $\Sigma(\Sigma_0) = \Sigma(\Sigma_3). \tag{5.96}$

После этого контроля приступаем к обработке результатов.

22. Выполняем действия, описанные в пунктах 4–9. Следует иметь ввиду, что в этой схеме каждой группе секторов соответствует свой коэффициент C_i .

В группе секторов 1, 7, 9, 15:

$$C_{1} \begin{cases} \xi'' \\ \eta'' \end{cases} = 0,005'' \cdot \begin{cases} \cos 22, 5^{\circ} \\ \sin 22, 5^{\circ} \end{cases} = \begin{cases} 0,0046'' \\ 0,0019'' \end{cases}.$$
В группе секторов 2, 6, 10, 14:

$$C_{2} \begin{cases} \xi'' \\ \eta'' \end{cases} = 0,005'' \cdot \begin{cases} \cos 45^{\circ} \\ \sin 45^{\circ} \end{cases} = \begin{cases} 0,0035'' \\ 0,0035'' \end{cases}.$$
В группе секторов 3, 5, 11, 13:

$$C_{3} \begin{cases} \xi'' \\ \eta'' \end{cases} = 0,005'' \cdot \begin{cases} \cos 67, 5^{\circ} \\ \sin 67, 5^{\circ} \end{cases} = \begin{cases} 0,0019'' \\ 0,0046'' \end{cases}.$$
В группе секторов 16, 8, 4, 12:

$$C_{4} \begin{cases} \xi'' \\ \eta'' \end{cases} = 0,005'' \cdot \begin{cases} \cos 360^{\circ} \\ \sin 90^{\circ} \end{cases} = \begin{cases} 0,0050'' \\ 0,0050'' \end{cases}.$$
Вычисленные по группам секторов значения ξ'' и η'' суммируем и записываем в строки ξ''_{5-100} и η''_{5-100} :

$$\begin{aligned} \xi_{5-100}'' &= \xi_1'' + \xi_2'' + \xi_3'' + \xi_4'' \\ \eta_{5-100}'' &= \eta_1'' + \eta_2'' + \eta_3'' + \eta_4'' . \end{aligned} \tag{5.97}$$

23. Значения ξ_{5-100}'' и η_{5-100}'' записываем в схему 5 (прил. 12), строка 5–100 км.

24. Вычисляем значения ζ_i (до 0,01 м). Сумму Δg_i для каждой зоны умножаем на коэффициенты $K_i \cdot 10^{-5}$.

25. Суммируем значения ζ_i по всем строкам и записываем результат в строку Σ_4 (до 0,1 м).

26. Вычисленное значение ζ_{5-100} записываем в схему № 6 (прил. 12), строка 5–100.

27. Вычисляем суммарные значения составляющих ξ,η и ζ : $\xi''_{0-100} = \xi''_{0-5} + \xi''_{5-100}$ $\eta''_{0-100} = \eta''_{0-5} + \eta''_{5-100}$ (5.98) $\zeta_{0-100} = \zeta_0 + \zeta_{0-5} + \zeta_{5-100} (M).$

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ И ЗАЩИТЕ ЛАБОРАТОРНОЙ РАБОТЫ

1. Работа выполняется на листах А4 с приложением результатов вычислений на бланках (прил. 11).

2. Работа должна иметь титульный лист, на котором указывается наименование учебного заведения, номер лабораторной работы и ее название, номер группы и фамилия студента (на листе слева). Справа пишется фамилия преподавателя, его должность. Внизу страницы – год.

3. На первой и последующих страницах записывается содержание лабораторной работы, излагается краткая теория метода вычисления составляющих уклонения отвеса и высот квазигеоида. Приводятся формулы для вычислений.

4. Далее прилагаются вычислительные схемы с подписью вычислителя и датой.

5. Записываются контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дать определение уклонения отвеса.

2. Назвать виды уклонений отвеса и дать их определения.

3. Величины уклонений отвеса и их размерность.

4. Где и каким образом используются уклонения отвесной линии.

5. Что означает высота квазигеоида, как она определяется, пределы ее изменения на земном шаре, размерность.

6. Для чего нужно знать высоту квазигеоида?

ЛАБОРАТОРНАЯ РАБОТА № 8

ОПРЕДЕЛЕНИЕ ФУНДАМЕНТАЛЬНЫХ ГЕОДЕЗИЧЕСКИХ ПОСТОЯННЫХ ПО ГРАВИМЕТРИЧЕСКИМ ДАННЫМ

ЦЕЛЬ РАБОТЫ: освоить метод определения сжатия уровенного эллипсоида по измерениям силы тяжести.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ: к выполнению задания следует приступить после изучения работ [28, гл. VI, § 47, 48]. Общие теоретические сведения представлены в лабораторной работе № 5 данного издания. Исходные данные для выполнения лабораторной работы № 8 приведены в прил. 7.

СОДЕРЖАНИЕ РАБОТЫ

Определить коэффициенты формулы распределения нормальной силы тяжести.

Вычислить значение сжатия уровенной поверхности α двумя методами. Динамический коэффициент $J_2 = 0,00108N$ (N – две последние цифры шифра).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Значение силы тяжести γ₀ на поверхности уровенного эллипсоида вычисляется по формуле:

 $\gamma_0 = \gamma_e \left(1 + \beta \sin^2 B - \beta_1 \sin^2 2B \right) - 14,$ мГал (5.99)

Коэффициенты γ_e , β , β_1 относятся к так называемым фундаментальным геодезическим постоянным; $\gamma_e = 978016$, мГал – значение нормальной силы тяжести на экваторе; $\beta = 0,005302$ – коэффициент порядка сжатия эллипсоида. Коэффициент β_1 относится к постоянным высших порядков, которые уверенно определяются при задании параметров нулевого порядка и порядка сжатия. В формуле (8.1) коэффициент β_1 будем считать равным 0,0000071. Таким образом, в формулу (8.1) входят два неизвестных коэффициента: γ_e , β . Для их определения нужно иметь значения γ_0 в двух точках. Но так как нормальную силу тяжести нельзя получить по результатам измерений, то для нахождения неизвестных γ_e и β используют измерения действительной силы тяжести в точках поверхности Земли.

Выразим значение силы тяжести γ_0 на поверхности уровненного эллипсоида через результаты измерений и разрешим уравнение относительно $\Delta g_{\rm CB}$:

 $\gamma_{0} = \gamma_{e} (1 + \beta \sin^{2} B - \beta_{1} \sin^{2} 2 B) - 14 = g - \delta g_{1} - (g - \gamma)_{CB} - 14$ (5.100) $-\Delta g_{CB} = \gamma_{e} + \gamma_{e} \beta \sin^{2} B - (g - 978000 - \delta g_{1} + \gamma_{e} \beta_{1} \sin^{2} 2 B) - (5.101)$ -978000. где Δg_{CB} – аномалия силы тяжести в редукции за свободный воздух;

δg₁ – поправка за высоту точки над уровнем моря;

g – измеренное значение силы тяжести.

Введем обозначения: $\left(a, -1\right)$

$$\begin{cases} a_{i} = 1, \\ b_{i} = \sin^{2} B_{i}, \\ 1_{i} = -(g_{i} - 978\ 000 - \delta g_{Ii} + \gamma_{e}\beta_{1}\sin^{2} 2B_{i}), \\ v_{i} = -\Delta g_{CB}, \\ x_{1} = \gamma_{e} - 978\ 000, \\ x_{2} = \gamma_{e}\beta. \end{cases}$$
(5.102)
(5.102)

 $\upsilon_i = a_i x_1 + b_i x_2 + l_i,$ (5.103)

где i – номер точки с измеренным значением силы тяжести, i = 1, ..., n; *n* – число точек с измеренным значением силы тяжести.

Уравнения поправок запишем в матричном виде:

$$Ax + L = \upsilon, \qquad (5.104)$$

где векторы (матрицы-столбцы) –

$$\upsilon = \begin{pmatrix} \upsilon_1 \\ \upsilon_2 \\ \cdot \\ \cdot \\ \cdot \\ \upsilon_n \end{pmatrix}, L = \begin{pmatrix} l_1 \\ l_2 \\ \cdot \\ \cdot \\ \cdot \\ l_n \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$
(5.105)

а матрица –

$$A = \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ a_{n} & b_{n} \end{pmatrix}.$$
 (5.106)

2. Составить систему нормальных уравнений под условием $[\upsilon \upsilon] = \min$. Число нормальных уравнений равно числу неизвестных:

Nx+l=0, (5.107)где матрица $N = A^T A = \begin{bmatrix} [aa] & [ab] \\ [ab] & [bb] \end{bmatrix};$ (5.108)

$$A^{T} = \begin{cases} a_{1} & a_{2} & \dots & a_{n} \\ b_{1} & b_{2} & \dots & b_{n} \end{cases},$$
 (5.109)

а вектор свободных членов

$$l = A^T L = \begin{bmatrix} [al] \\ [bl] \end{bmatrix}.$$
 (5.110)

3. Определить искомые неизвестные, решив систему нормальных уравнений:

$$x = -N^{-1} \cdot l = -Ql, \tag{5.111}$$

где *Q* – обратная по отношению к N матрица;

$$Q = N^{-1} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{12} & Q_{22} \end{pmatrix}.$$
 (5.112)

4. Определить коэффициенты формулы нормального распределения силы тяжести:

$$\gamma_e = (x_1 + 9/8 \ 000),$$
 мГал;

$$\beta = \frac{x_2}{\gamma_e}.\tag{5.113}$$

5. Определить сжатие уровенного эллипсоида в соответствии с теоремой Клеро:

$$\alpha = \frac{5}{2}q - \beta, \qquad (5.114)$$

где $q = \frac{\omega^2 a}{\gamma_e};$

 ω – угловая скорость вращения Земли, $\omega = 7,29 \cdot 10^{-5}$ рад/с;

a – большая полуось эллипсоида Красовского a = 6378245 м.

6. Определить сжатие уровенного эллипсоида через динамический коэффициент J_2 :

$$\alpha' = \frac{1}{2} [3J_2 + q]. \tag{5.115}$$

7. Оценить точность полученных результатов в соответствии с формулами:

$$\begin{split} \mu &= \sqrt{\frac{[vv]}{n-k}}; \qquad m_{\gamma_e} = \mu \sqrt{Q_{11}}; \\ m_{\gamma_e\beta} &= \sqrt{\mu} \sqrt{Q_{22}}; \quad m_\beta = \frac{m_{\gamma_e\beta}}{m_{\gamma_e}}; \\ m_\alpha &= \frac{m_\beta}{\alpha^2}, \\ \text{где } Q_{11}, Q_{22} - \text{диагональные коэффициенты обратной матрицы } N^{-1} = Q. \end{split}$$

Пример выполнения задания

Исходные данные (в соответствии с вариантом) приведены в табл. 5.15.

№ п/п	<i>B</i> ,° '	(<i>g</i> – 978 000),мГал
1	52°13'	3 275
2	36°48'	1 851
3	4°22'	73
4	25°45'	1 069
5	67°17'	4 193
6	48°50'	2 925

1. Составим уравнения поправок.

Величины δg_{l} , вычисленные по формуле (5.66), выбираются из табл. 5.9 лабораторной работы № 5. Значения b_i , l_i , вычисленные по формулам (5.100–5.102), оформлены в виде таблицы (табл. 5.16).

Таблица 5.16.3
начения b_i, l_i

N⁰	B ,	(<i>g</i> -978 000),	$-\delta g_1$,	$\gamma_e \beta_1 \sin^2 2B$,	<i>l</i> ,	$\gamma_{\rho}\beta b$,	υ,	<i>b</i> ,
п/п	01	мГал	мГал	мГал	мГал	мГал	мГал	мГал
1	52 13	3 275	1,5	6	-3 282	3 189	-13	0,62463
2	36 48	1 851	118,5	6	-1 976	1 832	-62	0,35883
3	4 22	73	0	0	-73	30	38	0,00580
4	25 45	1 069	-38,6	4	-1 034	964	0	0,18874
5	67 17	4 193	198,2	4	-4 395	4 344	30	0,85087
6	48 50	2 925	26,2	7	-2 958	2 894	8	0,56670

Матрица А примет вид:

		0,62463	
<i>A</i> =	1	0,35883	
	1	0,00580	
	1	0,18874	,
	1	0,85087	
	1	0,56670	

вектор свободных членов –

$$L = \begin{bmatrix} -3 \ 282 \\ -1 \ 976 \\ -73 \\ -1 \ 034 \\ -4 \ 395 \\ -2 \ 958 \end{bmatrix}.$$
Уравнения поправок примут вил:

$$x_{1} + 0,62463 \ x_{2} - 3\ 282 = v_{1} \\ x_{1} + 0,35883 \ x_{2} - 1\ 976 = v_{2} \\ x_{1} + 0,00580 \ x_{2} - 73 = v_{3} \\ x_{1} + 0,18874 \ x_{2} - 1\ 045 = v_{4} \\ x_{1} + 0,85087 \ x_{2} - 4\ 395 = v_{5} \\ x_{1} + 0,56670 \ x_{2} - 2\ 958 = v_{6} \end{bmatrix}$$

$$(5.117)$$

2. Составим систему нормальных уравнений:

$$N = \begin{bmatrix} 6 & 2,59557 \\ 2,59577 & 1,59967 \end{bmatrix};$$

$$l = \begin{bmatrix} -13718 \\ -8370 \end{bmatrix};$$

$$6x_1 + 2,59557 x_2 - 13718 = 0$$

$$2,59557 x_1 + 1,59967 x_2 - 8370 = 0 \end{bmatrix}.$$

3. Вычислим неизвестные, решив систему нормальных уравнений. Решение нормальных уравнений возможно двумя методами:

- Определение неизвестных с помощью программы MathCad;

- Вычисление неизвестных с помощью определителей.

Составим определитель D системы [27]:

$$D = \begin{vmatrix} n & [b] \\ [b] & [bb] \end{vmatrix} = n[bb] - [b][b] = 2,86105.$$

Неизвестные x_1 и x_2 , а также их весовые коэффициенты находят по формулам:

$$x_i = \frac{D_i}{D},$$

где D_i – определитель соответствующей величины.

Имеем:

$$D_{x_1} = \begin{vmatrix} -[l] & [b] \\ -[bl] & [bb] \end{vmatrix} = \begin{vmatrix} 13\ 738 & 2,59557 \\ 8\ 378 & 1,59967 \end{vmatrix};$$

$$x_{1} = \frac{D_{x_{1}}}{D} = 76, 7 \text{ мГал};$$

$$D_{x_{2}} = \begin{vmatrix} n & -[l] \\ [b] & -[bl] \end{vmatrix} = \begin{vmatrix} 6 & 13 & 718 \\ 2, 59557 & 8 & 370 \end{vmatrix};$$

$$x_{2} = \frac{D_{x_{2}}}{D} = 5 & 108 \text{ мГал};$$

$$D_{P_{x_{1}}} = \begin{vmatrix} 1 & [b] \\ 0 & [bb] \end{vmatrix} = [bb] = 1,59967;$$

$$\frac{1}{P_{x_{1}}} = \frac{D_{P_{x_{1}}}}{D} = 0,5599;$$

$$D_{P_{x_{2}}} = \begin{vmatrix} n & 0 \\ [b] & 1 \end{vmatrix} = n = 6;$$

$$\frac{1}{P_{x_{2}}} = \frac{D_{P_{x_{2}}}}{D} = 2,097.$$

Вычислим неизвестные с помощью программы MathCad:

$$\begin{aligned} x &= -Ql = \begin{vmatrix} 0,559 & -0,907 \\ -0,907 & 2,097 \end{vmatrix} \times \begin{vmatrix} -13&718 \\ -8&370 \end{vmatrix} = \begin{vmatrix} 76,668 \\ 5,108 \cdot 10^{3} \end{vmatrix};\\ x &= \begin{vmatrix} 76,7 \\ 5&108 \end{vmatrix} \text{ мГал.} \end{aligned}$$

4. Определим коэффициенты формулы нормального распределения силы тяжести:

 $\gamma_e = x_1 + 978\ 000 = 978\ 077$ мГал; $\beta = \frac{x_2}{\gamma_e} = 0,005222$.

5. Определим сжатия уровенной поверхности, приняв q = 0,003468:

$$\alpha = \frac{5}{2}q - \beta,$$

тогда $\alpha = 0,003448, \ \alpha = \frac{1}{290}.$

6. Определим сжатие уровенного эллипсоида через динамический коэффициент J₂:

$$q = 0,003468; \quad \alpha' = 0,0033623; \quad \alpha = \frac{1}{297}.$$

7. Оценим точность полученных результатов:

$$\mu = \sqrt{\frac{[\upsilon\upsilon]}{n-k}} = 40 \text{ мГал},$$

где *n* – количество измерений (*n* = 6);
k – количество неизвестных (*k* = 2).
$$m_{\gamma_e} = \frac{\mu}{\sqrt{P_{x_1}}} = \mu \sqrt{Q_{11}} = 30 \text{ мГал};$$
$$m_{\gamma_e\beta} = \frac{\mu}{\sqrt{P_{x_2}}} = \mu \sqrt{Q_{22}} = 58 \text{ мГал};$$
$$m_{\beta} = \frac{m_{\gamma_e\beta}}{\gamma_e} = 0,000059;$$
$$m_{\alpha} = \frac{m_{\beta}}{\alpha^2} = 5.$$

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Сравните полученные значения γ_e , β , α с современными значениями этих величин. Объясните, почему полученные Вами коэффициенты отличаются от приведенных в справочной литературе [26, § 16, 46–48].

2. Что относится к фундаментальным геодезическим постоянным?

3. Какая существует связь между динамическими и геометрическими параметрами, характеризующими фигуру Земли?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Астапов Ю.М. Земля и гравитация. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1996. – 188 с.

2. Астрономический ежегодник СССР на 1988 год. – Л.:Наука, 1988. – 690 с.

3. Боярский Э.А. Об оценке точности гравиметрических связей по формулам Буланже Ю.Д. // Изв. вузов, геодезия и аэрофотосъемка. – 1960. – № 6. – С. 45–51.

4. Бровар В.В. Гравитационное поле в задачах инженерной геодезии. – М.: Недра, 1983. – 112 с.

5. Буланже Ю.Д. Формулы для вычисления ошибок гравиметрической связи двух пунктов при многократных измерениях, выполненных группой гравиметров // Изв. АН СССР. Сер. Геофизика. – 1956. – № 7. – С. 755–764.

6. Буланже Ю.Д., Арнаутов Г.П. Результаты первого международного сравнения абсолютных гравиметров, Севр, 1981 // Изв. АН СССР. Сер. Физика Земли. – 1983. – № 3. – С. 43–51.

7. Веселов К.Е., Сагитов М.У. Гравиметрическая разведка. – М.: Недра, 1968. – 512 с.

8. Гладкий К.В. Гравиразведка и магниторазведка. – М.: Недра, 1967. – 320 с.

9. ГОСТ 13017–83. Гравиметры наземные. Общие технические условия. – М.: Изд-во стандартов, 1984. – 36 с.

10. ГОСТ Р 52334–2005. Гравиразведка. Термины и определения. – М.: Стандартинформ, 2005. – 28 с.

11. Гравиразведка: справочник геофизика / Под ред. Е.А. Мудрецовой, К.Е. Веселова. – 2-е изд., перераб. и доп. – М.: Недра, 1990. – 607 с.

12. Грушинский Н.П. Теория фигуры Земли. – М.: Наука, 1976. – 512 с.

13. Грушинский Н.П., Грушинский А.Н. В мире сил тяготения. – М.: Недра, 1978. – 176 с.

14. Грушинский Н.П., Сажина Н.Б. Гравитационная разведка: учеб. для техникумов. – 4-е изд. – М.: Недра, 1988. – 364 с.

15. Еремеев В.Ф. Расчет палетки для вычисления высот квазигеоида и уклонений отвеса по формулам Стокса и Венинг – Мейнеса // «Тр. ЦИИГАиК». – Вып. 121. – М., 1935. – С. 43–75.

16. Инструкция по гравиразведке. Единые технические требования. –Ч. 5. – М.: Недра, 1980. – 80 с.

17. Инструкция по развитию государственной гравиметрической сети СССР (Фундаментальной и І класса). – М.: ГУГК СССР, 1988. – 253 с.

18. Каленицкий А.И., Смирнов В.П. Методические рекомендации по учету рельефа местности в гравиразведке. – Новосибирск: СНИИГГиМС, 1981. – 171 с.

19. Каленицкий А.И. Еще раз о редукциях в гравиметрии // Вестник СГГА. – Вып. 11. – Новосибирск: СГГА, 2006. – с. 98–100.

20. Кузьмин В.И., Ганагина И.Г. Гравиметрия: метод. указания. – Новосибирск: СГГА, 2000. – 34 с.

21. Кузьмин В.И., Ганагина И.Г. Гравиметрия: метод. указания. – Новосибирск: СГГА, 2001. – 56 с.

22. Кузьмин В.И., Ганагина И.Г. Гравиметрия: метод. указания. – Новосибирск: СГГА, 2005. – 39 с.

23. Кузьмин В.И. Эталонирование гравиметров методом наклона: метод. указания. – Новосибирск: СГГА, 1996. – 30 с.

24. Кухлинг X. Справочник по физике / Пер. с нем. – М.: Мир, 1983. – 520 с.

25. Макаров Н.П. Геодезическая гравиметрия. – М.: Недра, 1968. – 408 с.

26. Мельхиор П. Физика и динамика планет / Пер. с франц. – М.: Мир, 1975. – Ч. 1. – 568 с.

27. Миронов В.С. Курс гравиразведки [Текст] / В.С. Миронов – Л.: Недра, 1972. – 512 с.

28. Огородова Л.В., Шимбирев Б.П., Юзефович А.П. Гравиметрия [Текст] / – М.: Недра, 1978. – 325 с.

29. Огородова Л.В., Юзефович А.П. Методические указания, программа и контрольная работа № 1 по курсу «Гравиметрия» [Текст] / – М.: МИИГАиК, 1983. – 30 с.

30. Огородова Л.В. Высшая геодезия. Ч. III. Теоретическая геодезия: учебник для вузов. – М.: Геодезкартиздат, 2006. – 384 с.

31. Пеллинен Л.П. Высшая геодезия (Теоретическая геодезия). – М.: Недра, 1978. – 264 с.

32. Ремпель Г.Г. Актуальные вопросы методики введения поправок, связанных с рельефом местности, в данные гравиразведки и магниторазведки // Изв. АН СССР. Сер. Физика Земли. – 1980. – № 12. – С. 75 – 89.

33. Сосновская М.В. Учебная практика по гравиметрии. – Новосибирск: НИИГАиК, 1981. – 33 с.

34. Стоцкий Л.Р. Физические величины и их единицы: справ. кн. для учителя. – М.: Просвещение, 1984. – 239 с.

35. Торге Вольфганг. Гравиметрия / Пер. с англ. – М.: Мир, 1999. – 429 с.

36. Успенский Д.Г. Гравиразведка. – Ленинград: Недра, 1968. – 332 с.

37. Цубои Т. Гравитационное поле Земли / Пер. с яп. – М.: Мир, 1982. – 288 с.

38. Шимберев Б.П. Теория фигуры Земли. – М.: Недра, 1973. – 432 с.

39. Юзефович А.П., Огородова Л.В. Гравиметрия: учеб. для вузов. – М.: Недра, 1980. – 320 с.

Астрономические данные для выполнения лабораторных работ Данные о Земле

Экваториальный радиус	<i>а</i> = 6 378,245 км
Полярный радиус	<i>b</i> = 6 356,777 км
Средний радиус	$\overline{R} = 6371, 032$ км
Сжатие эллипсоида	$\alpha = 1:298,25$
Macca	$M = 5,973 \cdot 10^{27} \mathrm{G}$
Ускорение силы тяжести	$\overline{g} = 9$, 80665 m/c ²
Гравитационная постоянная	$f = 6,67 \cdot 10^{-11} \mathrm{m^3/kr} \cdot \mathrm{c^2}$
Астрономическая единица	$A = 1,496 \cdot 10^{11}$ км
Средняя плотность земной коры	$\overline{\rho} = 2,67 \text{ г/cm}^3$
Плотность морской воды	$\rho_M = 1,03$ г/см ³

Данные о Луне

Macca	$m_o = 7,35 \cdot 10^{25} \mathrm{r}$
Ускорение силы тяжести	$\overline{g}_{o} = 1,623 \mathrm{m/c^{2}}$
Среднее расстояние от Земли	$r_{\Pi} = 384 401 \pm 1$ км
Видимый угловой диаметр при среднем расстоянии	D = 31'5, 16''
Средняя плотность	$\overline{\rho}_o = 3,350 \mathrm{r/cm}^3$
Средний суточный параллакс	$\pi = 57'2, 61''$
Диаметр Луны	$D_{\Pi} = 3474, 4$ км

Данные о Солнце

Autor o contra	
Macca	$M_C = (1,9904 \pm 0,002) \cdot 10^{32}$ г
Плотность	$\overline{\rho}_C = 1,410 \text{ г/cm}^3$
Видимый угловой диаметр	$D_C = 31'59, 26''$
Ускорение силы тяжести	$g_C = 273, 80 \text{ m/c}^2$
Параллакс	$\pi_C = 8,794''$
Среднее расстояние до Земли	 <i>r</i> = 149 599 300 км
Диаметр	<i>D_C</i> = 1 392 000 км

Образец заполнения таблицы результатов исследования уровней

Таблица П.2.1. Результаты исследования уровней и вычисления цены оборота измерительного винта

Уровни: А – продольный; Б – поперечный Гравиметр ГНУ-КС №1039											39	
Уровень Обороты истановолии их римтой			ы	Bp	емя	От	счеты і	по	Опред	еление ц	ены оборот	га
	устано	установочных винтов,			h,m		рометр	y <i>S</i> ,	микровинта гравиметра С,			
		000p.	-	п			000p.	_	мі ал/ооор.			
	n^T	$n_{\mathcal{J}}^{II}$	n_{Π}^{Π}	11	0	П ход	О ход	S_i	ΔS_i	$\binom{T}{n_i}^2$	$K(n^T)^2$	C_i
1	2	3	4	5	6	7	8	9	10	11	12	13
	0	n _i		<i>t</i> ₁		<i>S</i> ₁						
	+0,6	n_{i-6}		t_2		S_2						
	+0,4	n_{i-4}		<i>t</i> ₃		<i>S</i> ₃						
	+0,2	n_{i-2}		<i>t</i> ₄		S_4						
Α	0	n _i		<i>t</i> ₅		S_5						
	-0,2	n_{i+2}		t_6		S_6						
	-0,4	n_{i+4}		<i>t</i> ₇		S_7						
	-0,6	n_{i+6}		<i>t</i> ₈		S_8						
	0			<i>t</i> 9		<i>S</i> ₉						
	0	n _i	n_j	<i>t</i> ₁	<i>t</i> ₁₆	S_1	<i>S</i> ₁₆	\overline{S}_1	$\overline{S}_5 - \overline{S}_1$			0
	+0,6	n_{i+3}	n_{j-3}	t_2	<i>t</i> ₁₅	S_2	S_{15}	\overline{S}_2	$\overline{S}_5 - \overline{S}_2$			<i>C</i> ₁
	+0,4	n_{i+2}	n_{j-2}	<i>t</i> ₃	<i>t</i> ₁₄	<i>S</i> ₃	<i>S</i> ₁₄	\overline{S}_3	$\overline{S}_5 - \overline{S}_3$			<i>C</i> ₂
Г	+0,2	n_{i+1}	n_{j-1}	<i>t</i> ₄	<i>t</i> ₁₃	<i>S</i> ₄	<i>S</i> ₁₃	\overline{S}_4	$\overline{S}_5 - \overline{S}_4$			<i>C</i> ₃
D	0	n _i	n _j	<i>t</i> ₅	<i>t</i> ₁₂	<i>S</i> ₅	<i>S</i> ₁₂	\overline{S}_5	$\overline{S}_5 - \overline{S}_5$			0
	-0,2	n_{i-1}	n_{j+1}	t_6	<i>t</i> ₁₁	S_6	<i>S</i> ₁₁	\overline{S}_6	$\overline{S}_5 - \overline{S}_6$			<i>C</i> ₄
	-0,4	n_{i-2}	n_{j+2}	<i>t</i> ₇	<i>t</i> ₁₀	<i>S</i> ₇	<i>S</i> ₁₀	\overline{S}_7	$\overline{S}_5 - \overline{S}_7$			<i>C</i> ₅
	-0,6	n_{i-3}	<i>n</i> _{<i>j</i>+3}	<i>t</i> ₈	<i>t</i> 9	<i>S</i> ₈	<i>S</i> ₉	\overline{S}_8	$\overline{S}_5 - \overline{S}_8$			<i>C</i> ₆
Лата	Ha	аблюда	ал									

Дата

Вычислил

Формулы для вычислений:

$$\overline{C} = \frac{\sum_{i=1}^{n} C_{i}}{n}, C_{i} = \frac{K \cdot (n_{i}^{T})^{2}}{\Delta S_{i}}, \overline{S}_{i} = \frac{S_{i}^{n} + S_{i}^{o}}{2}, \Delta S_{i} = \overline{S}_{0} - \overline{S}_{i}, K = \frac{1}{2}g \cdot \mu^{2}, \mu = \frac{a}{d},$$

g = 981000 мГал, a = 0,75 мм, d = 125 мм.

Образец для заполнения гравиметрического журнала

(нашменование частя)		Дата:	Набл.		
		№, назв.	пункта		
		Время	Температура	Отсчеты по гравиметру	Примечани
ЖУРНАЛ №					
ГРАВИМЕТРИЧЕСКИХ ОПРЕДЕЛЕНИЙ					
19 г	. -	№ назв.	пункта		
	-				
айон					
A Star					
равиметр №		№, назв.	пункта		,
ейс					
аблюдатель					
AMERIMETO XYDHAR INOCAT BOGBDATETE ADD RO ARDCOV					

Исходные данные для выполнения лабораторной работы № 2

Номер гравиметра		C_0 ,	$M_C \cdot 10^{-4}$,	$\alpha_C \cdot 10^{-4}$,	$\overline{M}_{\alpha_C} \cdot 10^{-4}$,	$g_{\text{ огп-2}}$,
порялковый	по	мГал	мГал	мГал	мГал	мГал
порядковыя	паспорту	оборот	оборот	обор. · градус	обор. · градус	WII CUI
1	111	-7,0001	± 16,74	-13,17	±1,97	981 448,420
2	401	-7,6854	9,22	-7,60	1,72	981 447,489
3	413	-6,8691	11,12	-10,42	1,45	981 448,716
4	44	-7,8001	15,04	-40,59	2,01	981 447,178
5	73	-7,0956	16,53	-12,30	1,63	981 448,259
6	76	-7,1321	12,47	-10,31	1,99	981 448,208
7	116	-8,0758	7,43	-24,17	1,43	981 446,868
8	650	-8,1515	13,91	-2,70	1,13	981 446,581
9	1 172	-6,6769	4,90	-1,45	0,82	981 449,018
10 (0)	375	-7,1081	6,58	-2,16	1,10	981 448,279

Таблица П.4.1. Коэффициенты линейного уравнения гравиметров и их погрешности

Таблица П.4.2.Шкаловые поправки f(s), мкГал

Номер	Обороты микровинта														M (f),
грави- метра	2	3	4	5	6	7	8	9	10	11	12	13	14	15	мкГал
111	32	22	17	-5	-37	-15	-39	-18	-36	-2	0	36	36	20	±27
401	16	-6	-6	7	-2	21	18	-30	-13	22	0	44	-24	-5	24
413	1	1	0	4	1	-1	0	6	-2	-5	-5	-10	0	3	17
44	0	-11	20	31	17	18	8	-51	-95	79	5	-13	0	6	31
73	0	-5	-3	-13	-10	27	-3	-22	0	-17	12	14	24	10	13
76	0	21	10	7	10	-18	26	-17	19	-37	17	0	-43	-15	16
116	2	-12	-2	0	-13	8	-18	-2	-22	8	-6	14	36	0	10
650	28	6	0	-4	-17	-16	-7	-18	-17	-10	13	20	23	5	13
1 172	0	-3	-2	0	0	2	-1	-2	3	-1	1	0	2	2	7
375	13	3	-2	0	4	-7	-8	-3	2	-5	0	7	-1	3	8

Результаты наблюдений в гравиметрическом рейсе, выполненном по следующим схемам.

Название пункта	Время Т, hм	Отсчет \overline{S} , обор.	t, °C	Название пункта	Время Т, hм	Отсчет \overline{S} , обор.	t, °C
ОГП-1	9 15	6,589	20,0	8	1033	11,998	
1	9 23	5,327		9	10 42	12,252	
2	9 34	3,152		10	10 54	13,508	21,0
3	9 44	2,008		11	11 03	14,643	
4	9 53	4,298		12	11 12	10,828	
5	10 06	7,456	20,5	13	11 24	9,777	
6	10 15	9,701		14	11 32	8,915	
7	10 25	10,825		ОГП-2	11 51	8,125	21,5

Таблица П.4.3. 1. Между двумя опорными гравиметрическими пунктами ОГП-1 и ОГП-2

Таблица П.4.4. 2. С опорой на один гравиметрический пункт ОГП-1

Название пункта	Время Т, hм	Отсчет \overline{S} , обор.	t, °C	Название пункта	Время Т, hм	Отсчет \overline{S} , обор.	t, °C
ОГП-1	700	4,021	11,0	6	901	6,400	11,5
1	7 21	5,250		7	9 20	8,602	
2	7 43	4,032		8	9 42	7,000	
3	8 00	3,500		9	10 03	5,254	
4	8 22	2,200		10	10 22	6,301	
5	8 40	4,040		ОГП-1	10 41	4,109	12,0

Таблица П.4.5. 3. Прямой и обратный ход

Название пункта	Время Т, hм	Отсчет \overline{S} ,обор.	t, °C	Название пункта	Время Т, hм	Отсчет \overline{S} , обор.	t, °C
ОГП-1	946	5,443	21,0	4	1301	9,532	20,5
1	10 32	6,265		3	13 40	10,168	
2	10 55	7,850		6	14 14	4,100	
3	11 35	10,032		2	14 51	8,111	
4	12 18	9,453		1	15 16	6,636	
5	12 37	3,574	20,5	ОГП-1	15 51	5,555	20,0

Форма для заполнения таблицы обработки гравиметрических измерений

Таблица П.5.1

Ведомость обработки результатов измерений в гравиметровом рейсе

Район работИГиМ СГГА	Гравиметр ГНУ-КС №111
Гравиметровая партия _кафедра астрономии и гравиметрии	Цена оборота микровинта, C_t 7,001 мГал/обор.
Название (номер) рейсаучебный	НаблюдалКузьмин В.И
(ФИО)	(подпись)
Дата08.08.2008	ВычислилДерябин М.А
	(ФИО) (подпись)

Название пунктов	<i>Т</i> _{<i>i</i>} ,час	<i>∆Т</i> _{<i>i</i>} , час	t, °C	<u></u> ,обор.	$g_i^{\overline{S}}$ мГал	<i>∆G_і</i> ,мГ ал	$f_i^{\overline{s}}$,мГал	δ <i>g^п_i</i> ,мГ ал	Δt_i ,час	δg ^{нп} _i ,м Гал	<i>g</i> ,,мГал	<i>छ</i> _і ,мГал	<i>∆g_i</i> ,мГ ал	<i>g^a_i</i> ,мГа л
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Формулы:

$$g_{i}^{a} = g_{\circ} + \Delta g_{i}; \quad \Delta g_{i} = \overline{g}_{i} - \overline{g}_{1}; \quad \overline{g}_{i} = \frac{(g_{i})^{\mathrm{H}} + (g_{i})^{\mathrm{K}}}{2}; \quad g_{i} = g_{i}^{\overline{S}} + \delta g_{i}^{n} + f_{i}^{\overline{s}} + \delta g_{i}^{n}; \quad g_{i}^{\overline{S}} = C_{t} \cdot \overline{S}_{i}; \quad \delta g_{i}^{n} = k \cdot \Delta t_{i};$$

$$\Delta t_{i} = T_{i} - T_{1}; \quad k = \frac{\sum (\Delta G_{i} \Delta T_{i})}{\sum \Delta T_{i}^{2}}; \quad \Delta G_{i} = (g_{i}^{\overline{S}})^{\mathrm{H}} - (g_{i}^{\overline{S}})^{\mathrm{K}}; \quad \Delta T_{i} = T_{i}^{\mathrm{K}} - T_{i}^{\mathrm{H}}. \quad \delta g_{i}^{n} = \delta g_{\mathrm{J}} + \delta g_{\mathrm{C}}$$

 δg_{i}^{n} или δg_{nC} – поправка за приливное влияние Луны и Солнца вычисляется по формулам, приведенным в лабораторной работе № 3.

Исходные данные для выполнения лабораторной работы № 4

Вариант 1

k n	1	2	3	4	5	6	7
1	248,78	248,62	248,84	248,69	248,88	248,60	248,91
2	248,56	248,72	248,68	248,91	248,59	248,59	248,84
3	249,02	249,00	248,85	248,78	248,59	248,59	249,10
4	249,07	248,92	248,77	248,90	248,89	248,89	249,03

Вариант 2

k	1	2	3	1	5	6	7	8
n	1	2	5	-	5	0	/	0
1	248,71	248,69	248,57	248,94	248,94	248,72	248,95	248,80
2	248,76	248,97	248,65	248,78	248,84	248,83	249,03	248,97
3	248,80	248,76	248,62	248,78	248,92	249,00	248,83	248,87

Вариант 3

k	1	2	3	4	5	6	7	8
n	1	2	5	-	5	0	/	0
1	248,94	248,78	248,78	248,90	248,84	248,92	248,72	248,72
2	249,00	248,95	249,03	248,83	248,80	248,97	248,97	248,87
3	248,91	248,95	248,96	248,72	248,68	248,71	248,69	248,69

Вариант 4

k	1	2	3	4	5	6	7	8
n	1	2	5	•	5	0	,	0
1	248,84	248,70	248,69	249,07	28,92	248,77	248,90	248,83
2	248,90	249,05	248,83	249,10	248,87	248,88	248,76	248,91
3	248,83	249,00	248,68	248,97	248,69	248,79	248,73	248,88

Вариант 5

k	1	2	3	Δ	5	6	7	8
n	1	2	5	Т	5	0	/	0
1	248,78	248,84	248,88	248,91	248,65	248,69	248,94	248,72
2	248,56	248,68	248,79	248,84	248,98	248,97	248,78	248,82
3	249,02	248,85	248,62	249,10	248,91	248,76	248,78	249,00

Вариант	6
---------	---

Вариант 7

k	1	2	3	k	1	2	3
n	1	2	5	n	1	2	5
1	248,72	248,83	249,00	1	248,62	248,72	249,00
2	248,95	249,03	248,83	2	248,69	248,91	248,78
3	249,01	248,91	248,95	3	248,88	248,79	248,62
4	248,61	248,68	248,73	4	248,91	248,84	249,10
5	248,94	248,84	248,62	5	248,65	248,98	248,91
6	249,07	248,92	248,77	6	248,71	248,76	248,80
7	248,87	249,10	248,88	7	248,57	248,65	248,62
8	248,98	248,88	248,99	8	248,94	248,78	248,78

Вариант 8

Вариант 9

k	1	2	3	k	1	2	3
n	1	2	5	n	I	2	5
1	248,83	248,76	249,03	1	248,78	248,56	249,02
2	248,71	248,93	248,99	2	248,62	248,72	249,00
3	248,84	248,88	248,92	3	248,84	248,68	248,85
4	249,07	248,90	248,88	4	248,69	248,91	248,78
5	248,90	249,05	248,83	5	248,88	248,79	248,62
6	248,87	248,92	248,77	6	248,60	248,59	248,59
7	248,81	248,70	248,69	7	248,91	248,84	249,10
8	248,98	248,84	248,62	8	248,59	248,85	248,82

Вариант 10

Вариант 10				Вариант 11				
k	1	2	3	k	1	2	3	
n	1	2	5	n	1	2	5	
1	248,65	248,98	248,91	1	248,94	248,84	248,62	
2	248,71	248,76	248,80	2	248,84	248,70	248,69	
3	248,69	248,97	248,76	3	249,07	248,92	248,77	
4	248,57	248,65	248,62	4	248,90	249,05	248,83	
5	248,94	248,78	248,78	5	248,87	249,10	248,88	
6	248,90	248,84	248,92	6	248,81	248,93	248,92	
7	248,72	248,83	249,00	7	248,98	248,88	248,99	
8	248,95	249.03	248,83	8	248,83	248,76	249,03	

Вариант 12

Вариант 13

k n	1	2	3	k n	1	2	3
1	248,94	248,78	248,78	1	248,71	248,76	248,80
2	248,90	248,84	248,92	2	248,69	248,97	248,76
3	248,72	248,83	249,00	3	248,57	248,65	248,62
4	248,95	249,03	248,83	4	248,94	248,78	248,78
5	248,80	248,97	248,87	5	248,90	248,84	248,92
6	249,01	248,91	248,95	6	248,72	248,83	249,00
7	248,66	248,72	248,68	7	248,95	249,03	248,83
8	248,61	248,68	248,73	8	248,80	248,97	248,87

Вариант 14

Вариант 15

k	1	2	3	k	1	2	3	4
n	I	2	5	n	1	2	5	+
1	248,78	248,56	249,02	1	248,78	248,56	249,02	249,07
2	248,84	248,68	248,85	2	248,62	248,72	249,00	248,92
3	248,88	248,79	248,62	3	248,84	248,68	248,85	248,77
4	248,91	248,84	249,10	4	248,69	248,91	248,78	248,90
5	248,65	248,98	248,91	5	248,88	248,79	248,62	248,83
6	248,69	248,97	248,76	6	248,60	248,59	248,59	248,89
7	248,94	248,78	248,78	7	248,91	248,84	249,10	249,03
8	248,72	248,82	249,00					
Исходные данные для выполнения лабораторных работ № 5, 8

Таблица П.7.1

№ п/п	В	Н, м	h, м	<i>g</i> , мГал	№ п/п	В	Н, м	ћ, м	g, мГал
1 1	37 ⁰ 54'	19		980 059,5	2 1	51 [°] 53'	215		981180,9
2	44 11	873		980 345,2	2	44 10	629		980 397,6
3	67 31	0	385	982 428,1	3	67 32	0	3 650	982 356,7
4	27 20	0	13	979 261,5	4	35 32	0	216	979 894,2
5	42 38	93	100	980 421,8	5	42 37	91	100	980 426,0
6	8 58	7	10	978 242,1	6	12 08	131	11	978 283,3
3 1	67 17	13		982 386,8	4 1	70 40	16		982 631,7
2	44 06	643		980 380,4	2	44 02	488		980 387,3
3	70 20	0	819	982 777,7	3	67 36	0	940	982 421,2
4	35 54	0	10	979 823,8	4	35 34	0	27	979 823,5
5	42 35	88	100	980 381,6	5	42 34	92	100	980 418,8
6	16 31	3519	12	977 467,3	6	0 13	2 815	13	977 913,4
5 1	52 06	5		981 269,0	6 1	52 13	25		981 267,6
2	103 03	1 042		978 039,8	2	4 38	2 592		977405,4
3	67 37	0	4 160	982 469,2	3	67 38	0	4 091	982 483,5
4	37 49	0	58	979 992,4	4	37 19	0	72	980 142,8
5	42 34	86	100	980 421,9	5	42 35	86	100	980 417,3
6	43 59	807	14	980 261,9	6	43 57	808	15	980 345,1
7 1	55 45	44		981 558,2	8 1	38 43	76		980 089,6
2	43 56	1610		980 007,3	2	1 15	1636		977 540,0
3	67 39	0	891	982 548,8	3	64 37	0	5 011	982 267,2
4	39 38	0	99	980 225,4	4	40 01	0	245	980 264,2
5	42 38	85	100	980 313,9	5	42 34	92	100	980 320,5
6	1 23	27	16	978 029,1	6	43 54	823	21	980 293,3
9 1	69 58	27		982 621,5	10 1	59 55	31		981 926,7
2	43 49	829		980 219,4	2	4 22	439		977 924,6
3	67 46	0	4 076	982 495,7	3	67 47	0	4 206	982 499,9
4	41 36	0	73	980 363,2	4	46 58	0	135	980 878,0
5	42 28	5	100	980 409,6	5	42 30	10	100	980 419,4
6	4 22	450	18	977 915,2	6	43 46	202	19	980 399,3
11 1	48 50	66		980 940,6	12 1	52 23	86		981 274,1
2	43 46	876		980 285,3	2	43 46	1 429		980 170,1
3	67 47	0	1 396	982 412,2	3	67 47	0	4 179	982 442,4
4	50 22	0	125	981 189,8	4	4 48	0	45	978 094,5
5	42 31	22	100	980 420,4	5	42 33	52	100	980 415,3
6	5 37	10	20	978 105,9	6	1 19	19	21	978 081,8
13 1	64 08	8		982 278,4	14 1	41 54	45		980 364,3
2	43 39	81		980 422,9	2	43 34	1 470		980 105,4
3	67 48	0	4 3 1 6	982 496,3	3	67 49	0	3 7 3 0	982 465,4
4	7 48	0	55	978 163,8	4	9 20	0	80	978 179,7
5	42 34	135	100	980 319,3	5	42 34	75	100	980 418,1

№ п/п	В	Н, м	h,м	<i>g</i> , мГал	№ п/п	В	Н, м	h, м	<i>g</i> , мГал
6	6 49	7	22	978 132,0	6	35 02	61	23	979 722,2
15 1	59 21	45		981 846,7	16 1	51 25	9		981 195,5
2	43 32	1213		980 177,4	2	43 34	355		980 359,8
3	67 49	0	3970	982 544,1	3	67 50	0	3846	982 502,3
4	12 48	0	135	978 318,2	4	14 41	0	20	978 400,3
5	42 32	183	100	980 271,1	5	43 33	350	150	980 360,5
6	69 58	27	24	982 623,7	6	69 26	150	25	982 604,5
17 1	50 04	96		981 061,4	18 1	60 10	20		981 915,3
2	4 22	450		977 926,9	2	43 28	2348		979 801,6
3	67 51	0	4476	982 499,4	3	67 55	0	1800	982 501,7
4	16 46	0	33	978 461,2	4	17 56	0	120	978 556,5
5	43 36	352	150	980 454,8	5	43 34	351	150	980 465,4
6	43 29	253	16	980 360,7	6	1 23	11	27	978 036,5
19 1	55 55	129		981 584,2	20 1	37 41	141		979 875,6
2	43 18	3210		979 473,1	2	43 36	502		980 369,9
3	67 59	0	3712	982 508,6	3	68 06	0	2629	982 481,5
4	19 09	0	250	978 639,4	4	35 59	0	140	979 961,8
5	43 35	351	150	980 465,5	5	43 18	76	110	980 353,3
6	6 56	7	28	978 098,5	6	8 58	7	30	978 241,1
21 1	43 32	7		980 509,2	22 1	37 47	35		979 979,0
2	43 17	1577		980 067,0	2	43 16	1848		979 882,5
3	68 09	0	4540	982 535,1	3	68 09	0	1900	982 510,8
4	27 36	0	100	979 161,6	4	22 25	0	18	978 861,2
5	35 15	34	200	979 729,2	5	35 13	198	200	979 712,5
6	9 58	3	31	978 169,7	6	1 19	19	32	978 081,3
23 1	33 53	30		979 686,4	24 1	14 24	5		978 385,5
2	43 16	1741		979 951,7	2	43 07	911		980 165,3
3	68 12	0	1930	982 530,4	3	68 16	0	1710	982 513,8
4	4 01	0	50	978 097,1	4	42 06	0	30	980 392,7
5	35 13	258	200	979 586,1	5	35 13	378	200	979 551,1
6	69 14	15	33	982 577,7	6	6 56	7	34	978 140,5
25 1	12 20	23		978 314,2	26 1	61 15	48		981 940,0
2	43 16	346		980 315,5	2	43 03	1419		980 021,7
3	67 01	0	1840	982 523,4	3	68 17	0	3290	982 492,3
4	20 21	0	55	978 689,8	4	5 44	0	45	978 094,1
5	43 35	251	250	980 470,3	5	35 14	673	200	979 609,9
6	8 30	4	29	978 122,2	6	25 55	22	37	979 051,3
27 1	1 23	11		978 037,6	28 1	34 34	8		979 705,3
2	43 03	633		980 232,1	2	43 03	679		980 233,5
3	68 20	0	2340	982 519,8	3	68 22	0	1590	982 551,5
4	34 36	0	55	979 771,4	4	6 52	0	56	978 107,4
5	35 13	802	200	979 408,3	5	35 13	844	200	979 467,3

№ п/п	В	Н, м	h,м	g , мГал	№ п/п	В	Н, м	һ, м	g , м Γ ал
6	67 42	215	38	982 422,5	6	67 40	48	39	982 468,1
29 1	38 54	1		980 119,4	30 1	22 20	1		978 803,9
2	35 13	1 058		979 565,7	2	35 12	955		979 590,8
3	68 23	0	1 650	982 531,5	3	68 33	0	1 985	982 531,4
4	8 07	0	20	978 174,7	4	9 18	0	49	978 242,2
5	43 18	153	250	980 300,4	5	43 00	157	400	980 215,7
6	67 35	175	40	982 432,5	6	66 58	150	41	982 459,7
31 1	40 38	5		980 227,4	32 1	45 24	83		980 622,5
2	43 00	1722		979 960,1	2	35 12	918		979 600,2
3	68 33	0	2 660	982 508,7	3	68 33	0	4 375	982 575,7
4	10 07	0	65	978 208,3	4	11 12	0	70	978 257,2
5	35 12	726	200	979 599,4	5	43 00	219	200	980 302,5
6	21 16	120	42	978 660,1	6	14 24	5	43	978 385,5
33 1	12 20	23		978 314,5	34 1	8 58	7		978 242,4
2	43 03	1 047		980 108,3	2	43 00	1714		979 932,2
3	68 17	0	2 600	982 425,7	3	68 38	0	3 215	982 506,7
4	4 55	0	33	978 078,0	4	32 35	0	75	979 570,9
5	35 14	614	200	979 621,2	5	35 11	722	200	979 598,2
6	67 36	6	36	982486,3	6	19 20	2268	44	977 940,7
35 1	22 54	29		978 805,1	36 1	37 46	1		979 987,5
2	42 48	1219		980 059,4	2	42 47	1584		979 986,3
3	68 44	0	2 740	982 708,4	3	68 46	0	1 855	982 523,8
4	32 53	0	80	979 527,6	4	21 27	0	150	978 779,6
5	35 10	890	200	979 481,6	5	35 11	986	200	979 541,5
6	4 22	430	25	977 927,4	6	1 22	46	11	978 022,2
37 1	15 20	2		978 320,6	38 1	29 53	3		979 291,4
2	42 46	1139		980 097,5	2	35 11	1043		979 590,5
3	68 51	0	1 050	982 643,3	3	68 52	0	2290	982 517,1
4	34 35	0	85	979 668,1	4	12 21	0	89	978 303,8
5	35 11	858	200	979 573,8	5	42 43	66	200	980 286,0
6	29 56	10	47	979 305,8	6	33 54	10	48	979 654,3
39 1	33 53	53		979 690,9	40 1	22 16	3		978 767,4
2	42 43	1333		980 029,3	2	42 42	2 831		979 553,0
3	68 54	0	2 0 2 2	982 552,2	3	68 57	0	3 300	982 560,1
4	13 42	0	95	978 375,5	4	14 46	0	100	978 388,5
5	35 10	586	200	979 633,3	5	35 10	528	200	979 650,7
6	6 57	32	10	978 144,4	6	8 58	7	55	978 252,5
41 1	1 19	19		978 082,4	42 1	33 57	38		979 648,3
2	42 32	1 190		980 056,7	2	35 12	842		979 614,5
3	69 08	0	4 0 3 6	982 591,8	3	68 16	0	2 662	982 466,4
4	31 37	0	130	979 545,5	4	4 15	0	40	978 120,8
5	53 15	8	200	979 729,1	5	43 02	64	200	980 346,2
6	28 37	214	57	979 135,6	6	69 00	20	35	982 545,3
43 1	25 55	22		979 051,3	44 1	40 31	300		980 228,0
2	16 31	3 519		977 397,8	2	42 21	579		980 218,3
3	67 14	0	3 270	982 472,0	3	69 23	0	3 080	982 568,9
4	38 38	0	70	980 090,0	4	12 21	0	130	978 313,5

№ п/п	В	Н, м	h, м	<i>g</i> , мГал	№ п/п	В	Н, м	һ, м	<i>g</i> , мГал
5	35 12	578	350	979 584,3	5	35 17	500	300	979 598,5
6	5 21	200	25	978 328,7	6	48 14	3	11	980 819,1
45 1	69 58	27		982 624,0	46 1	6 49	7		978 132,5
2	1 25	673		977 832,5	2	42 00	708		980 107,1
3	65 29	0	1111	982 367,3	3	65 41	0	2500	982 434,4
4	27 52	0	90	979 289,1	4	28 55	0	85	979 314,3
5	35 09	560	250	979 461,9	5	35 09	378	250	979 649,2
6	42 04	332	18	980 169,0	6	40 25	401	50	980 200,3
47 1	8 30	4		978 122,5	48 1	9 58	3		978 170,4
2	41 59	578		980 121,0	2	41 54	444		980 172,9
3	65 50	0	1460	982 337,4	3	66 39	0	1076	982 380,7
4	28 55	0	80	979 283,5	4	29 14	0	75	979 275,3
5	35 08	242	250	979 682,7	5	35 08	111	250	979 708,5
6	40 26	401	45	980 077,6	6	40 30	401	40	980 207,5
49 1	40 36	68		980 286,3	50 1	61 15	48		981 940,5
2	42 24	1005		980 073,5	2	0 13	2815		977 278,2
3	69 20	0	3300	982 546,3	3	67 13	0	4413	982 446,1
4	11 12	0	135	978 272,7	4	38 16	0	210	980 113,8
5	35 18	473	300	979 599,5	5	35 12	510	350	979 597,6
6	22 54	29	43	978 805,1	6	19 15	1320	11	978 182,4
51 1	61 15	48		981 940,7	52 1	15 20	10		978 317,4
2	19 20	2268		977 941,5	2	42 06	893		980 060,5
3	8 58	0	3500	978 142,2	3	65 18	0	1506	982 422,2
4	38 40	0	90	980 097,3	4	28 57	0	95	979 196,6
5	35 12	647	350	979 570,0	5	35 11	747	250	979 576,0
6	20 00	1540	36	978 113,4	6	2 43	239	45	977 976,1
53 1	19 16	93		978 552,3	54 1	16 53	3		978 499,9
2	42 19	376		980 223,1	2	42 21	1061		980 066,4
3	69 32	0	1945	982 439,8	3	69 46	0	2900	982 580,6
4	23 36	0	125	978 896,4	4	23 41	0	120	978 912,5
5	35 16	685	300	979 561,4	5	35 15	767	300	979 542,3
6	48 37	20	10	980 871,1	6	49 42	1754	15	980 564,1
55 1	5 37	0		978 106,0	56 1	14 24	5		978 385,4
2	35 15	1202		979 320,3	2	42 14	1248		980 027,1
3	69 48	0	1017	982 614,8	3	69 49	0	2140	982 578,7
4	24 46	0	115	979 040,2	4	25 26	0	110	979 094,8
5	42 15	7	150	980 275,1	5	35 16	810	300	979 538,5
6	56 21	4	20	981 630,5	6	42 36	104	25	980 390,2
57 1	18 55	6		978 633,8	58 1	1 19	19		978 082,3
2	41 49	2008		979 664,0	2	41 45	1684		979 882,6
3	66 57	0	1020	982 444,3	3	66 44	0	1250	982 363,1
4	29 16	0	70	979 456,7	4	29 26	0	65	979 358,4
5	35 06	19	250	979 725,3	5	35 12	730	250	979 390,2

№ п/п	В	Н, м	h, м	<i>g</i> , мГал	№ п/п	В	Н, м	h, м	<i>g</i> , мГал
6	2 45	245	39	977 963,5	6	40 26	401	38	980 200,4
59 1	4 02	143		978 014,2	60 1	4 20	74		978 033,9
2	41 46	855		980 095,5	2	41 46	285		980 193,7
3	67 04	0	3875	982 460,4	3	67 14	0	3270	982 470,2
4	29 50	0	60	979 469,5	4	30 40	0	55	979 526,0
5	35 13	743	250	979 380,1	6	35 13	736	250	979 582,2
6	77 53	12	37	982 992,6	0	69 58	27	36	982 624,8
61 1	4 26	65		978 080,1	62 1	5 15	37		978 080,2
2	35 14	978		979 481,4	2	35 14	1005		979 576,9
3	67 24	0	2780	982 501,3	3	67 28	0	2750	982 533,3
4	31 17	0	55	979 500,8	4	31 58	0	45	979 575,4
5	41 43	251	150	980 178,5	6	41 44	347	150	980 118,5
6	70 40	16	36	982 632,6	Ű	19 16	5	34	978 624,0
63 1	5 12	49		978 069,7	64 1	5 18	102		978 025,7
2	41 38	267		980 142,3	2	35 15	911		979 500,7
3	67 31	0	3300	982 545,5	3	67 33	0	3120	982 538,0
4	32 19	0	40	979 591,2	4	32 25	0	35	979 573,2
5	35 15	683	250	979 587,9	6	41 37	398	125	980 151,0
6	22 53	29	33	978 804,0	Ũ	26 12	755	32	978 858,2
65 1	14 20	10		978 491,6	66 1	1 23	11		978 036,2
2	42 11	1359		979 997,9	2	35 11	1099		979 556,1
3	69 56	0	4184	982 566,2	3	65 15	0	3450	982 335,0
4	25 30	0	105	979 050,2	4	26 12	0	100	979 109,5
5	35 16	726	300	979 566,3	6	42 07	11	150	980 221,1
6	42 46	7	30	980 430,5		42 46	4	35	980 430,3
67 1	5 43	78		978 098,3	68 1	5 11	69		978 063,6
2	41 30	794		980 058,2	2	41 27	2093		979 771,0
3	67 45	0	3280	982 529,7	3	67 52	0	3395	982 535,5
4	34 30	0	25	979 743,0	4	35 06	0	20	979 775,4
5	35 15	645	250	979 604,3	6	35 15	536	250	979 523,5
6	15 20	100	30	978 343,1		29 53	89	29	979 318,0
69 1	5 11	75		978 068,0	70 1	5 22	64		978 061,3
2	41 25	1717		979 841,5	2	41 18	405		980 116,8
3	67 52	0	3265	982 542,4	3	67 57	0	1975	982 572,7
4	36 03	0	289	979 887,0	4 5	36 05	0	299	979 903,3
5	35 15	471	250	979 638,3	6	35 15	528	250	979 474,7
6	17 50	471	28	978 456,6		15 36	380	27	978 303,0
71 1	5 32	123		978 076,3	72 1	8 58	36		978 244,7
2	35 15	1051		979 573,1	2	35 15	1128		979 553,1
3	68 00	0	2360	982 527,5	3	68 03	0	1690	982 564,3
4	37 34	0	210	980 012,9	4	37 36	0	120	979 995,8
5	41 20	29	150	980 157,4	6	41 12	511	150	980 099,0
6	29 56	10	26	979 306,6		24 54	25	25	978 962,2
73 1	5 32	99		978 090,1	74 1	651	4		978 136,9

№ п/п	В	Н, м	h, м	g , мГал	№ п/п	В	Н, м	һ, м	g , м Γ ал
2	41 38	1180		980 034,2	2	26 12	1755		978 448,7
3	6743	0	2025	982 555,5	3	66 43	0	4710	982 411,4
4	33 03	0	30	979473,2	4	38 01	0	102	980022,5
5	35 16	638	250	979 422,6	5	25 14	114	350	979673,3
6	25 45	334	31	978 939,3	6	33 02	48	18	979 628,8
75 1	1 19	19		978 072,3	76 1	40 36	69		980 223,0
2	15 25	1270		978 054,2	2	25 45	1337		978 629,5
3	66 44	0	3120	982 433,5	3	66 52	0	4232	982 426,1
4	38 06	0	99	980 000,0	4	38.08	0	67	980 046,8
5	35 13	180	350	979 663,3	5	35 13	219	350	979 656,4
6	41 43	401	17	980 178,8	6	013	815	21	9/7/48,6
771	40 39	25		980 226,4	781	50 04	96		981 061,5
2	1 15	1636	2442	977 540,3	2	1/50	1472	0705	9/8 148,7
3	66.57	0	3443	982 416,5	3	00.57	0	2/35	982 424,4
4	38 22	108	250	980 051,4	4	38 20	220	250	980 001,7
5	33 18 10 05	198	<u> </u>	979 037,3	5	33 13 9 57	339 15	14	979 333,3
70 1	19 03	440	15	978 408,1	80 1	0.57	55	14	978 246,1
2	10 10	43		980 304,9	2	4 20	3510		978 083,3
2	67 10	0	3100	982 424 8	2	10 J1 66 40	0	2839	982 421 5
	38.28	0	80	980.062.5	<u> </u>	37 58	0	150	980 030 2
	25 12	402	250	980 002,5	-	25.14	0	250	980 030,2
5	35 12	402	350	979 619,3	5	35 14	68	350	979 580,3
6	10 30	1042	13	978 040,9	6	26 22	30	9	979 126,5
81 1	1 21	29		978 087,5	82 1	4 18	76		978 024,4
2	41 11	2320		979 587,4	2	41 10	755		980 086,3
3	66 28	0	4721	982 389,8	3	66 31	0	2291	982 395,2
4	37 38	0	220	980 020,1	4	37 43	0	175	980 020,4
5	35 15	883	250	979 550,5	5	35 14	190	350	979 535,7
6	28 37	214	24	979 136,2	6	30 46	313	23	979 310,1
83 1	9 22	80		978 160,3	84 1	5 47	12		978 103,7
2	35 12	1163		979 536,5	2	35 18	829		979 581,0
3	66 31	0	3980	982 415,4	3	67 28	0	3946	982 515,7
4	37 45	0	130	980 012,3	4	37 47	0	80	980 005,3
5	41 01	43	250	980 141,9	5	41 01	170	200	980 115,1
6	19 52	558	22	978 484,6	6	26 50	436	21	978 990,5
85 1	1 19	25		978 072,1	86 1	1 23	16		978 034,6
2	40 59	803		980 086,5	2	40 24	655		979 982,4
3	66 34	0	4445	982 398,3	3	67 26	0	4009	982 423,3
4	37 49	0	85	980 015,7	4	37 51	0	135	980 022,8
5	35 13	275	350	979 646,2	5	35 16	157	350	979 663,7
6	18 55	6	20	978 603,4	6	17 33	531	19	978 335,9
87 1	6 51	17		978 129,9	88 1	22 20	4		978 796,5
2	10 30	1054		977 832,5	2	4 38	2592		977 405,3
3	66 40	0	2785	982 432,7	3	67 12	0	3674	982 415,4

№ п/п	В	Н, м	h, м	<i>g</i> , мГал	№ п/п	В	Н, м	h, м	<i>g</i> , мГал
4	37 56	0	145	980 029,2	4	38 33	0	95	980 074,2
5	35 16	389	350	978 619,2	5	35 13	139	458	979 677,7
6	15 11	170	10	978 396,1	6	19 10	220	12	978 514,0
89 1	35 03	61		979 722,4	90 1	6 49	7		978 132,1
2	42 40	2257		979 758,2	2	42 40	1727		979 831,7
3	68 57	0	2385	982 624,5	3	69 00	0	2663	982 559,8
4	16 52	0	105	978 436,8	4	26 26	0	110	979 054,3
5	35 09	398	200	979 525,0	5	35 09	286	200	979 603,7
6	0 13	815	51	977 898,1	6	16 31	519	45	978 391,6
91 1	24 54	25		978 962,6	92 1	15 11	170		978 396,7
2	42 35	810	• • • • •	980 153,4	2	42 35	1807	1 - 1 0	979 930,2
3	69 01	0	2000	982 517,5	3	69 02	0	1510	982 531,5
4	35 59	0	120	979 896,3	4	27 44	0	115	979 271,5
5	35 09	216	200	979 566,4	5	35 09	137	200	979 605,2
02 1	8 38	/	53	978 242,0	04 1	6 49	/	54	9/8 131,0
931	28 37	214		979 136,4	94 1	<u> </u>	5 1072		979 126,3
2	42 34	375	2710	980 231,5	2	42 34	1973	1520	979 701,0
5	4.01	0	120	962 340,3	5	09 04	0	1350	962 002,4
4	4 01	0	120	978 112,2	4	4 15	0	125	978 139,5
5	35 08	37	200	979748,1	5	35 08	5	200	979747,8
6	22 16	10	55	978 761,3	6	24 54	25	56	978 962,0
95 1	35 38	21		979 790,0	96 1	35 43	18		979 801,2
2	42 40	2257		979 758,2	2	26 12	1715		978 550,4
3	69 10	0	1200	982 579,6	3	69 10	0	2118	982 547,4
4	4 55	0	135	978 100,3	4	5 44	0	140	978 115,3
5	35 18	23	200	979 736,3	5	35 19	52	300	979 706,1
6	28 22	150	58	979 080,1	6	42 31	572	45	980 195,4
97 1	40 35	33		980 290,5	98 1	40 37	65		980 288,4
2	42 29	2349		979 832,7	2	42 28	2200		979 859,4
3	69 14	0	1600	982 590,2	3	69 16	0	1100	982 557,6
4	6 52	0	145	978 126,3	4	8 07	0	20	978 190,8
5	35 20	245	300	979 658,8	5	35 19	356	300	979 636,3
6	29 53	148	60	979 246,0	6	25 45	377	61	978 929,1
99 1	40 33	250		980 110,4	100 1	40 37	164		980 280,5
2	42 24	1076		980 082,1	2	42 26	1469		979 989,7
3	69 18	0	3340	982 572,2	3	69 19	0	3367	982 567,8
4	9 18	0	49	978 243,3	4	10 07	0	140	978 225,7
5	35 20	333	300	979 629,6	5	35 19	436	300	979 606,0
6	22 20	154	62	978 658,1	6	19 20	268	53	978 551,4

Нормальные значения силы тяжести $\gamma_0\,$ мГал

 $(\Phi$ ормула Гельмерта) $\gamma_0 = \gamma_e (1 + \beta \sin^2 B - \beta_1 \sin^2 2B) - 14,$ мГал

Таблица П.8.1

В	0'	10'	20'	30'	40′	50'
0°	978016,0	016,0	016,2	016,4	016,7	017,1
1	017,6	018,1	018,8	019,5	020,4	021,3
2	022,3	023,4	024,5	025,8	027,2	028,6
3	030,1	031,6	033,4	035,2	037,1	039,1
4	041,1	043,2	045,4	047,8	050,1	052,6
5	055,2	057,8	060,6	063,4	066,3	069,3
6	072,4	075,5	078,8	082,1	085,5	089,0
7	092,6	096,3	100,0	103,9	107,8	111,8
8	115,9	120,1	124,4	128,7	133,1	137,6
9	142,2	146,9	151,7	156,5	161,5	166,5
10	171,6	176,7	182,0	187,3	192,7	198,2
11	203,8	209,5	215,2	221,1	227,0	233,0
12	239,0	245,2	251,4	257,7	264,1	270,5
13	277,1	283,7	290,4	297,2	304,0	311,0
14	318,0	325,1	332,2	339,5	346,8	354,2
15	361,7	369,2	376,2	384,5	392,3	400,1
16	408,1	416,0	424,1	432,3	440,5	448,8
17	457,1	465,6	474,1	482,6	491,3	500,0
18	508,8	517,7	526,6	535,6	544,7	553,8
19	563,0	572,3	581,7	591,1	600,6	610,1
20	619,8	629,5	639,2	649,0	658,9	668,9
21	678,9	689,0	699,1	709,3	719,6	730,0
22	741,4	750,8	761,4	772,0	782,6	793,4
23	804,1	815,0	825,9	836,8	847,9	858,9
24	870,1	881,3	892,5	903,9	915,2	926,7
25	938,1	949,7	961,3	972,9	984,7	996,4
26	979008,2	020,1	032,0	044,0	056,1	068,2
27	080,3	092,5	104,7	117,0	129,4	141,8
28	154,2	166,7	179,2	191,8	204,5	217,1
29	229,9	242,7	255,5	268,4	281,3	294,2
30	307,2	320,3	333,4	336,5	359,7	372,9
31	386,2	399,5	412,8	426,2	439,7	453,1

Продолжение табл. П.8.1

B	0'	10'	20'	30'	40'	50'
32	466,6	480,2	493,8	507,4	521,0	534,7
33	548,5	562,2	576,0	589,9	603,8	617,7
34	631,6	645,6	659,6	673,6	687,7	701,8
35	715,9	730,1	744,3	758,5	772,8	787,0
36	801,4	815,7	830,1	844,4	858,9	873,3
37	887,8	902,3	916,8	931,3	945,9	960,5
38	975,1	989,7	004,3	019,0	033,7	048,4
39	980063,1	077,9	092,7	107,7	122,2	137,1
40	151,9	166,7	181,6	196,5	211,4	226,3
41	241,2	256,1	271,1	286,0	301,0	316,0
42	331,0	346,0	361,0	376,0	391,0	406,0
43	421,1	436,1	451,2	466,2	481,3	496,4
44	511,4	526,5	541,6	556,7	571,7	586,8
45	601,9	617,0	632,6	647,1	662,2	677,3
46	692,4	707,5	722,6	737,6	752,7	767,8
47	782,8	797,9	812,9	827,9	843,0	858,0
48	873,0	888,0	903,0	918,0	933,0	947,9
49	962,9	977,8	992,8	007,7	022,6	037,5
50	981052,3	067,2	082,1	096,9	111,7	126,5
51	141,3	156,0	170,8	185,5	200,2	214,9
52	229,6	244,2	258,8	273,4	288,0	302,6
53	317,3	317,3	331,6	346,1	360,5	375,0
54	403,8	418,1	432,5	446,8	461,0	475,3
55	489,5	503,7	517,8	532,0	546,0	560,1
56	574,1	588,1	602,1	616,0	629,9	643,8
57	657,6	671,4	685,2	698,9	712,6	726,2
58	739,8	753,4	766,9	780,4	793,9	807,3
59	820,7	834,1	847,4	860,6	873,8	886,9
60	900,0	913,1	926,1	939,1	952,0	964,9
61	977,8	990,6	003,3	016,1	028,7	041,3
62	982053,9	066,4	078,9	091,3	103,7	116,0
63	128,2	140,5	152,8	164,8	176,8	188,8
64	200,8	212,7	225,5	236,3	248,0	259,7
65	244,3	282,9	294,4	305,9	317,3	328,6
66	339,9	351,1	362,2	373,4	384,4	395,4
67	406,3	417,2	428,0	438,7	449,4	460,0
68	470,5	481,0	491,4	501,8	512,1	522,3
69	532,5	542,6	552,6	562,6	572,5	582,3

70	502 1	601.9	611 /	621.0	620 5	620.0
/0	592,1	001,8	011,4	021,0	030,5	039,9
71	649,3	658,6	667,8	676,9	686,0	695,0
72	704,0	712,9	721,6	730,4	739,0	747,6
73	756,1	764,5	772,9	781,2	789,4	797,6
74	805,6	813,6	821,5	829,4	837,1	844,8
75	852,4	860,0	867,4	874,8	882,1	889,4
76	896,5	903,6	910,6	917,5	924,4	931,1
77	937,8	944,4	950,9	957,4	963,7	970,0
78	976,2	982,4	988,4	994,4	000,2	006,0
79	983011,8	017,4	023,0	028,4	033,8	039,1
80	044,4	049,5	054,6	059,5	064,4	069,2
81	074,0	078,6	083,2	087,6	092,0	096,3
82	100,6	104,7	108,7	112,7	116,6	120,4
83	124,1	127,7	131,3	134,7	138,1	141,4
84	144,6	147,7	150,7	153,6	156,5	159,2
85	161,9	164,5	167,0	169,4	171,8	174,0
86	176,1	178,2	180,2	182,1	183,9	185,6
87	187,2	188,8	190,2	191,6	192,9	194,1
88	195,2	196,2	197,1	197,9	198,7	199,4
89	199,9	200,4	200,8	201,1	201,5	201,5

Исходные данные для выполнения лабораторной работы № 6 *Таблица* П.9.1

ДолготаШирот	1019	101 50	1029	102.50	1029
a	101	101,5	102	102,5	105
440	980 301,5	980 312,4	980 292,9	980 289,1	980 231,0
44	630	600	750	820	1 080
12 50	980 219,9	980 217,0	980 203,5	980 205,5	980 175,0
43,5°	800	850	1 000	1 000	1 130
120	980 174,1	980 141,4	980 131,6	980 113,8	980 093,0
43	930	1 010	1 070	1 150	1 200
42.59	980 116,2	980 097,4	980 076,6	980 031,2	980 016,6
42,5	1 000	1 010	1 100	1 190	1 240
129	980 056,2	980 032,6	980 020,7	979 990,0	979 957,3
42	980	1 090	1 130	1 220	1 310
<i>41 5</i> 9	980 006,0	979 972,7	979 952,9	979 924,7	979 904,3
41,5	976	1 130	1 180	1 230	1 310
410	979 993,2	979 972,4	979 940,7	979 901,3	979 861,5
41	900	960	1 070	1 240	1 300
40.50	979 942,3	979 924,5	979 915,6	979 872,1	979 874,3
40,5	850	920	950	1 100	1 150
400	979 887,8	979 879,0	979 839,2	979 792,8	979 765,0
40*	870	950	1 000	1 180	1 240

Таблица П.9.2

ДолготаШирот а	103,5°	104°	104,5°	105°	105,5°
44°	980 128,4	980 020,3	980 129,1	980 104,2	980 112,9
	1 510	2 000	1 420	1 470	1 350
43,5°	980 104,1	980 135,4	980 071,7	980 033,2	980 010,1
	1 470	1 270	1 350	1 500	1 500
43°	980 092,2	980 069,8	80 025,9	979 974,0	979 940,3
	1 250	1 450	1 470	1 520	1 600
42,5°	979 994,2	979 990,3	979 989,9	979 970,7	979 907,2
	1 300	1 320	1 500	1 450	1 550
42°	979 919,6	979 901,7	979 905,6	979 906,8	979 702,3
	1 400	1 430	1 400	1 480	2 530
41,5°	979 831,0	979 827,0	979 785,7	979 719,8	979 638,5
	1 520	1 530	1 750	2 000	2 600
41°	979 809,2	979 766,5	979 697,7	979 657,8	979 557,0
	1 520	1 620	1 800	200	2 670
40,5°	979 795,1	979 752,4	979 688,1	979 519,8	979 483,7
	1 400	1 500	1 720	2 520	3 060
40°	979 751,2	979 714,7	979 685,8	979 627,3	979 404,6
	1 320	1 470	1 500	1 650	2 670

Таблица П.9.3

ДолготаШирот а	106°	106,5°	107°	107,5°	108°
110	980 077,4	980 058,4	979 952,6	980 090,4	980 100,8
44	1 500	1 500	2 200	1 500	1 320
12 50	979 952,9	980 046,8	979 936,8	979 914,8	979 822,1
43,5°	1 740	1 400	2 000	2 000	2 400
420	979 892,9	979 904,0	979 841,5	979 826,6	979 873,0
43*	1 770	1 800	1 970	2 000	1 800
10 50	979 697,1	979 794,5	979 828,5	979 838,2	979 796,5
42,5°	2 470	2 000	1 980	1 900	2 000
400	979 666,4	979 626,5	979 670,2	979 719,4	979 707,5
42°	2 380	2 300	2 200	1 950	1 986
11 50	979 514,5	979 396,0	979 562,2	979 547,2	979 616,0
41,3*	2 900	3 350	2 500	2 500	2 150
410	979 543,4	979 538,1	979 617,8	979 618,8	979 625,7
41	2 500	2 400	2 000	2 000	1 980
40.50	979 360,3	979 360,3	979 404,1	979 520,9	979 588,9
40,5°	3 800	2 900	2 920	2 280	1 950
409	979 360,9	979 419,1	979 330,7	979 375,2	979 431,1
40°	2 750	2 500	3 000	2 850	2 500

Образец гравиметрической карты

Рис. П.10.1

Образцы схем для выполнения лабораторной работы № 7 СХЕМА № 1

Таблица П.11.1

Вычисление уклонений отвесной линии за влияние аномалий в зоне радиуса 5–100 км

K	1 22,5	7 157,5	9 202,5	15 337,5	2 45	6 135	10 225	14 315	3 67,5	5 112,5	11 247,5	13 292,5	16 360	8 180	4 90	12 270	Высо	Высоты квазигеоида	
ξ	-	+	+	_	-	+	+	-	_	+	+	_	_	+	0	0	Σ	$K \cdot 10^{-5}$	ćм
η	-	_	+	+	-	-	+	+	-	-	+	+	0	0	_	+	\angle_3	_	vı, ₁ vı
Ι																		15	
II																		22	
III																		32	
IV																		47	
V																		69	
VI																		101	
VII																		49	
VIII																		219	
\sum_{0}																	$\Sigma(\Sigma)$ $\Sigma(\Sigma_0)$	$\Sigma_{_4} =$	
\sum_{1}		0,004 6	ξ_1''			0,003 5	ξ2			0,0019	ξ3			0,005 0	ξ ″ 4			†	
\sum_{2}		0,001 9	η_1''			0,003 5	η_2''			0,004 6	η ″			0,005 0	η''_4			контроль	
									D-						ξ_{Σ}''				
	Вычислил: Проверил:												η_{Σ}''						

Название пункта: 67,5°

Таблица П.11.2

CXEMA № 4

Вычисление уклонений отвесной линии за влияние аномалий в центральной

				зоне ()—5 км				
Номер секторя	2	6	10	14	16	8	4	12	ζ, \mathcal{M}
ير ن		+	+	—	_	+	0	0	0,00032
η		_	+	+	0	0	_	+	Σ_3
0									
Σ_1		0,0186	" 1			0,0263	ξ"2		ζ_{0-5}
Σ_2		0,0186	η_1''			0,0263	η_2''		
							ξ " 5 0–5		
							η''_{0-5}		

Таблица П.11.3

CXEMA № 5

Окончательное значение гравиметрических уклонений отвесной линии для

	пункта	
Зона	ξ " εp	η <i>"_{гр}</i>
Центральная зона 0–5 км	ξ″ <u>0</u> -5	η''_{0-5}
5–100 км	ξ ″ 5–100	η''_{5-100}
Σ	$\xi''_{0-5} + \xi''_{5-100}$	$\eta''_{0-5} + \eta''_{5-100}$

Таблица П.11.4

CXEMA № 6

Окончательное значение высоты квазигеоида для пункта

Область интегрирования	ζ, <i>M</i>
Центральная точка	γ
$(\Delta g_0 = () \ge 0,00255) \dots = \dots$	<u>0</u> ک
Граница центральной области	(a r
0-5 км	50-5
5–100 км	ζ ₅₋₁₀₀
Σ	$\zeta_0 + \zeta_{0-5} + \zeta_{5-100}$
Вычи	ислил:

Проверил:

Таблица П.12.1

Пример выполнения лабораторной работы № 7 СХЕМА № 1

Вычисление уклонений отвесной линии за влияние аномалий в зоне радиуса 5–100 км

Название пункта: **+ 43° 69°** (Т.6)

-					-							(/						
K	1	7	9	15	2	6	10	14	3	5	11	13	16	8	4	12	Высс	ты квази	геоида
ξ	-	+	+	_	-	+	+	_	-	+	+	_	-	+	0	0	Γ	$K \cdot 10^{-1}$	
η	I	_	+	+	-	_	+	+	I	_	+	+	0	0	_	+	\angle_3		ς, Μ
Ι	-35	-49	-51	-38	-35	-47	-50	-41	-37	-43	-49	-43	-36	-50	-40	-47	-691	15	-0,10365
II	-30	-51	-52	-35	-31	-48	-51	-39	-33	-43	-50	-43	-32	-51	-38	-48	-675	22	-0,148
III	-22	-52	-53	-30	-25	-50	-53	-36	-29	-42	-52	-43	-25	-53	-35	-49	-649	32	-0,2077
IV	-10	-54	-55	-23	-13	-51	-55	-34	-21	-41	-53	-42	-15	-55	-30	-50	-602	47	-0,2829
V	+5	-57	-58	-10	-1	-52	-58	-28	-10	-39	-56	-40	+5	-58	-26	-52	-535	69	-0,3692
VI	+19	-60	-64	+15	+10	-51	-63	-21	-3	-35	-59	-39	+23	-65	-19	-53	-465	101	-0,4696
VII	+24	-68	-64	+29	+14	-45	-63	0	+7	-18	-60	-35	+39	-68	-4	-53	-365	49	-0,544
VIII	+5	-51	-55	+65	+11	+39	-58	+25	+30	-10	-52	-31	+37	-56	+30	-47	-196	219	-0,429
\sum_{0}	-44	-412	-412	-27	-70	-383	-451	-174	-96	-271	-431	-316	-4	-456	-162	-399	-4178 -4178	$\Sigma_4 =$	-2,58
\sum_{1}	-812	0,0046	ξ1	-3″,786	-590	0,0035	ξ2	-2″,065	-290	0,0019	ξ"3	-0″,551	-452	0,0050	ξ ″	-2",260		\uparrow	
\sum_{2}	+18	0,0019	η_1''	+0,0	-172	0,0035	η_2''	-0″,602	-380	0,0046	η_3''	-1″,748	-237	0,0050	η''_4	-1″,185		контрол	Ь
															(1				

Вычислил: Кузьмин В.И.

 $\xi_{\Sigma}^{"}$ –8",611 η_{Σ}'' -3″,522

Таблица П.12.2

CXEMA № 4

Вычисление уклонений отвесной линии за влияние аномалий в центральной

	30HC U-5 KM												
Номер сектора	2	6	10	14	16	8	4	12	ς,Μ				
ىد	I	+	+	—	I	+	0	0	0,00032				
η	-	_	+	+	0	0	—	+	Σ				
0	-38	-47	-49	-42	-38	-50	-42	-47	-353				
Σ	16	0,0186	ξ"	-0",2976	-12	0,0263	ξ2	-0",3156	-0",11296				
Σ	-16	0,0186	$\eta_1^{"}$	-0",1116	-5	0,0263	η_2	-0",1315					
							ξ"0–5	-0",6132					
							η" 0–5	-0",2431					

Таблица П.12.3

CXEMA № 5

Окончательное значение гравиметрических уклонений отвесной линии для

	пункта	
Зона	ξ _{<i>г</i>р}	η _{<i>гр</i>}
Центральная зона 0–5 км	-0″,61	-0",24
5–100 км	-8″,662	-3″,522
100–300 км		
300–1000 км		
Σ	-9",13	-3″,74

Таблица П.12.4

CXEMA № 6

Окончательное значение высоты квазигеоида для пункта

Область интегрирования	ξ, Μ
Центральная точка $\Delta g_0 = -44 \cdot 0,00255 = -0,1122$	-0,11
Граница центральной области 0–5 км	-0,11
5-100 км	-2,57
Σ	-2,79

Вычислил:

Проверил:

Требования к точности планово-высотного обоснования гравиметрических съемок

Таблица П.13.1

Масштаб отчетных карт и графиков	Сечение изоаномал, мГал	Среднеквад- ратическая погрешность определения аномалий силы тяжестив редукции Буге, мГал	Среднеквад- ратическая погрешность определения наблюденных значений силы тяжести, мГал	Полная погрешность интерполяци и, мГал	Среднеквадра тическая погрешность определения высот, м	Среднеквадрати- ческая погрешность определения координат пунктов относительно Государственной геодезической сети, м	Густот Число на 1 пунктов кв. км	га сети Расстояние между пунктами при наблюдениях по профилям, м
		I	ДЛЯ	РАВНИННЫХ	Х РАЙОНОВ	,		1
1:500 000	5	± 1,5	±0,5	$\pm 2,0$	± 5,0	± 200	0,04–0,10	2 500-5 000
1:200 000	2	± 0.8	$\pm 0,4$	±1,0	$\pm 2,5$	± 100	0,10-0,25	1 000-2 000
1:100 000	1	$\pm 0,4$	± 0,3	$\pm 0,5$	± 1,2	± 80	0,25-1,00	500-1 000
1:50 000	0,50	$\pm 0,20$	± 0,15	$\pm 0,35$	$\pm 0,70$	± 40	2-30	100-500
1:25 000	0,25	$\pm 0,10$	± 0,07	$\pm 0,20$	$\pm 0,35$	± 40	4–50	50-250
	0,25	± 0,10	± 0,06	± 0,20	$\pm 0,35$	± 20	12-60	50-250
1:10000	0,20	\pm 0,08	$\pm 0,06$	$\pm 0,15$	$\pm 0,25$	± 20	16-80	20-100
	0,20	$\pm 0,08$	± 0,06	±0,15	$\pm 0,20$	± 4	20-100	20-100
1:5 000	0,10	$\pm 0,04$	± 0,03	$\pm 0,07$	±0,10	± 4	25-200	10–50
	0,10	$\pm 0,04$	± 0,030	$\pm 0,07$	± 0,10	± 2	50-250	10-50
	0,05	± 0,02	±0,015	±0,03	$\pm 0,05$	± 2	100-500	5-25
			Д.	ЛЯ ГОРНЫХ Р	РАЙОНОВ			
1:500 000	5	± 2,0	± 0,5	± 3,0	± 3,00	± 120	0,04–0,10	2 500-5 000
1:200 000	2	± 1,0	± 0,40	± 1,50	± 3,00	± 100	0,10-0,25	1 000-2 000
1:100 000	1	$\pm 0,50$	± 0,25	$\pm 0,70$	± 1,80	±100	0,25–1,0	500-1 000
1:50 000	1	$\pm 0,50$	$\pm 0,25$	$\pm 0,70$	$\pm 1,60$	± 50	1,0-10,0	100-500

1:25 000	0,50	± 0,25	± 0,12	±0,35	$\pm 0,90$	± 50	2-30	50-250
	0,50	± 0,25	$\pm 0,12$	± 0,35	$\pm 0,90$	± 25	4-50	50-250
1:10 000	0,25	± 0,12	$\pm 0,06$	±0,20	$\pm 0,45$	± 25	12-60	20-100
	0,20	±0,10	$\pm 0,06$	$\pm 0,15$	±0,25	± 5	20-100	20-100
1:5000	0,10	$\pm 0,05$	± 0,03	±0,07	±0,12	± 2	50-250	10-50